# 集積回路ばらつきの解析・予測に向けた デバイスモデリングの状況

#### 広大IEEE講演会 2007年7月12日

#### 広島大学先端物質科学研究科:三浦道子

目次

# I. ばらつき解析・予測 I-1. ばらつき分類 I-2. ばらつき抽出 I-3. ばらつき予測

# II. デバイスモデリング II-1. コンパクトモデル II-2. コンパクトモデルの精度 II-3. コンパクトモデルの可能性

# I-1. ばらつきの分類

# >Inter-Chip(Die)ばらつき: Systematic >Intra-Chip(Die)ばらつき: Random □ Mismatch



Inter-ChipとIntra-Chipばらつきの考慮の方法?

# Inter-Chipばらつき



Wafer上のばらつき:In-Line測定からの抽出



ばらつき間に相関はない

#### 測定されるデバイスレベルのばらつき



測定される回路レベルのばらつき

|   | ΔL          | $\Delta N_{sub,n}$ | $\Delta N_{sub,p}$ | $\Delta T_{OX}$ |
|---|-------------|--------------------|--------------------|-----------------|
| 1 | <b>2</b> σ  | <b>2</b> σ         | <b>-2</b> σ        | <b>2</b> σ      |
| 2 | <b>2</b> σ  | <b>2</b> σ         | <b>-2</b> σ        | <b>-2</b> σ     |
| 3 | <b>2</b> σ  | <b>-2</b> σ        | <b>2</b> σ         | <b>2</b> σ      |
| 4 | <b>2</b> σ  | <b>-2</b> σ        | <b>2</b> σ         | <b>-2</b> σ     |
| 5 | <b>-2</b> σ | <b>2</b> σ         | <b>-2</b> σ        | <b>2</b> σ      |
| 6 | <b>-2</b> σ | <b>2</b> σ         | <b>-2</b> σ        | <b>-2</b> σ     |
| 7 | <b>-2</b> σ | <b>-2</b> σ        | <b>2</b> σ         | <b>2</b> σ      |
| 8 | <b>-2</b> σ | <b>-2</b> σ        | <b>2</b> σ         | <b>-2</b> σ     |



O. Prigge et al., IEICE, E82-C, p. 9107, 1999.

# Intra-Chipばらつき



S. Toriyama et al., Proc. SISPAD, 23, 2005.

不純物ばらつきによって生じた電流ばらつき



ばらつきの平均化ができない

# I-2. ばらつきの見積もり

- ▶ アレイ構造を用いた測定
- > 基本回路を用いた抽出
- ≻ FVの微細応答特性から抽出
  - -1/fノイズ
  - 高調波ひずみ

#### アレイ構造を用いた測定



#### MOSFETばらつきが支配的



H. Masuda et al., CICC, p. 593, 2005.

#### SystematicばらつきとRandomばらつきの分離



4次のpolynomial function近似

Inter-Chipばらつき>Intra-Chipばらつき?

# **1/fノイズ特性**



#### 1/fノイズ特性からのずれ

#### Lg=0.13μm (nMOSFET)



Intra-Chipばらつきの原因?

#### 高調波ひずみ



#### 移動度との比較



Mobility determines the harmonic distortion characteristics.

#### **Universal Mobility**



Carrier濃度のばらつき 二〉 基板濃度のばらつき

# I-3. 回路のばらつき予測







性能ばらつきはInter-DieばらつきとIntra-Dieばらつきから決まる

 ①
 Stochasticな考察

目次

# I. ばらつき予測 I-1. ばらつき分類 I-2. ばらつき抽出 I-3. ばらつき予測

# II. デバイスモデリング II-1. コンパクトモデル II-2. コンパクトモデルの精度 II-3. コンパクトモデルの可能性

II-1. コンパクトモデル

 ・回路モデルはデバイスと集積回路をつなぐ要
 ・回路モデルの精度が回路予測精度を決定



デバイスの基本方程式



-Quantum Mechanical Effect -Ballistic Effect



Inversion-Charge-Based Model: EKV



#### Drift-Diffusion Approximation: HiSIM

$$I_{\rm ds} / \left(\frac{1}{\beta}\mu \frac{W}{L}\right) = C_{\rm ox}(1 + \beta V_{\rm G}')(\phi_{\rm SL} - \phi_{\rm S0}) - \frac{\beta}{2} C_{\rm ox}(\phi_{\rm SL}^2 - \phi_{\rm S0}^2) - \frac{2}{3} \sqrt{\frac{2\varepsilon_{\rm s} q N_{\rm sub}}{\beta}} \left[ (\beta \phi_{\rm SL} - 1)^{\frac{3}{2}} - (\beta \phi_{\rm S0} - 1)^{\frac{3}{2}} \right] + \sqrt{\frac{2\varepsilon_{\rm s} q N_{\rm sub}}{\beta}} \left[ (\beta \phi_{\rm SL} - 1)^{\frac{1}{2}} - (\beta \phi_{\rm S0} - 1)^{\frac{1}{2}} \right] V_{\rm G}' = V_{\rm gs} - V_{\rm fb} + \Delta V_{\rm th}$$

• Drift Approximation (Vth-Based Model): BSIM

$$\phi_{S0} = 2\Phi_{B} = \frac{2}{\beta} \ln\left(\frac{N_{sub}}{n_{i}}\right); \quad \phi_{SL} = \phi_{S0} + V_{ds}$$

$$I_{ds} / \left(\mu \frac{W}{L} C_{ox}\right) = \left(V_{G} - 2\Phi_{B} - \frac{\sqrt{2\epsilon_{s}qN_{sub}}}{C_{ox}} 2\Phi_{B}^{\frac{1}{2}}\right) V_{ds} - \left(\frac{1}{2} + \frac{\sqrt{2\epsilon_{s}qN_{sub}}}{4C_{ox}} 2\Phi_{B}^{-\frac{1}{2}}\right) V_{ds}^{2}$$

$$\simeq \left(V_{G} - V_{th}\right) V_{ds} - \frac{1}{2}V_{ds}^{2}$$

$$V_{G} = V_{gs} - V_{fb}$$

#### 電流を外部電圧で記述計算 二〉 V<sub>th</sub>がモデルパラメタ

#### HiSIMとBSIM4の比較



II-2. コンパクトモデルの精度



> No model parameters are required.

Features are determined only by I-V characteristics.

#### 45nmノードにおける電流の再現性



#### 微分値の再現性

 $W_g/L_g=2\mu m/40nm$ 



#### 表面ポテンシャルの比較



# II-3. コンパクトモデルの可能性



#### **IP3 Prediction**

#### キャリアの遅延効果



#### 基板濃度Nsubを振ったwaferの特性予測



#### $I_{on}$ は基本的には $V_{th}$ に支配されている

まとめ

# 回路ばらつき予測に向けて:

- Inter- & Intra-Chipばらつき抽出が課題
- 両方のばらつきを考慮した回路シミュレーション法 stochasticな考察も必要
- ばらつきを考慮できるコンパクトモデル

surface potentialモデルが優位