"ばらつき"とコンピュータ・ シミュレーション EDAプラットフォーム

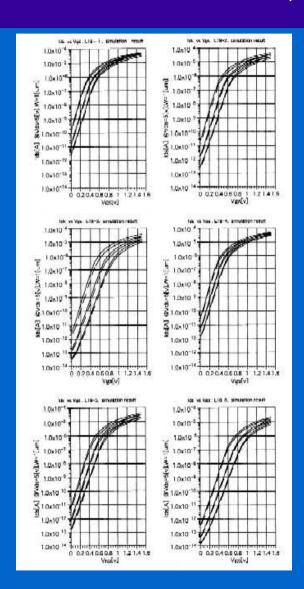
飯野 由久シルバコ・ジャパン

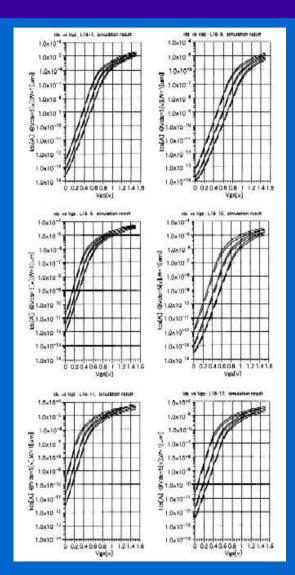
2007 IEEE EDS Japan chapter workshop July 12, 2007, Hiroshima university, Japan

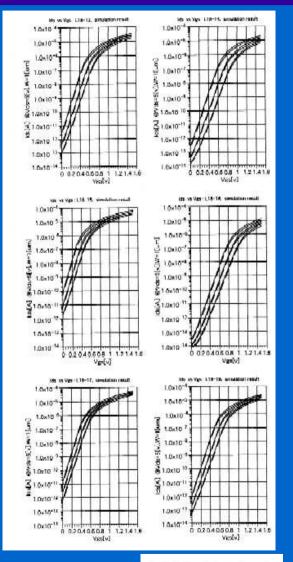
概要

・ばらつき原因を制御せずに対象特性のばらつきを減ら す手法の可能性

•Silvaco、Simucad社EDAプラットホーム

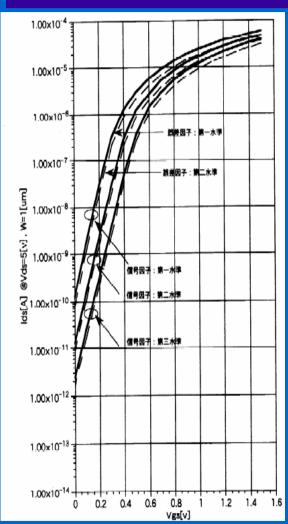

概要


ばらつき原因を制御せずに対象特性のばらつきを減ら す手法の可能性

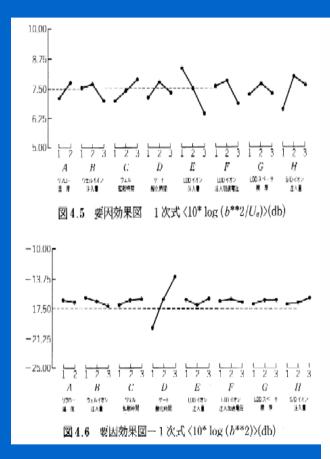

品質工学会 http://www.qes.gr.jp/top.html ばらつきのモデル化は不要

•Silvaco、Simucad社EDAプラットホーム

対象特性のばらつき



安定性評価の指標: SN比



半導体製造の技術開発(1994年) (品質工学応用講座)

		701925	単位	V	
信号	M _i	M ₂	M ₂		
誤差	-3.5	0	3.5		
N_1 N_2	0.4850 0.5400		1.224		
T #	1.025 0		2,368		
$=\frac{(y_{11}+\cdots+y_{1n})}{3}$	$0.912^2 \cdots + 1.1$ $(22 + \cdots + y_{32})^2 \times 2$	$1445^2 - 4.8959412$ $1445)^2 - 4.436740$		W 0	
$= r_0 [M_1^2 + M_2^2]$ $= 2[(-3.5)^2 + 3.$ $= \frac{(M_1^* Y_1 + M_2)^2}{(-3.5)^2}$	52]=49.0	8((4.3
_[(-3.5)×1.0	$\frac{025+3.5\times2.3}{49}$	$\frac{(68.5)]^2}{} = 0.451.246$	3 06	(f=1)	(4.4
$= S_T - S_m - S_\beta$					
=4.895 941 25	-4.436 740 04	1-0.451 248 06=0	0.007	953 15	
				(f - 4)	(4.5
$= \frac{S_e}{k \times r_0 - 2} - \frac{0.00795315}{4}$					(4.6

表 4.3			MOS トランジスタの SN 比と感度							渡
因子 列 No	A 1	В 2	C 3	D 4	<i>E</i> 5	F 6	G 7		η (db)	S(db)
1	1	1	1	1	1	1	1	1	6.64	-20.38
2	1	1	2	2	2	2	2	2	8.87	-15.84
3	1	1	3	3	3	3	3	3	6.14	-12.02
4	1	2	1	1	2	2	3	3	7.24	-19.90
5	1	2	2	2	3	3	1	1	5.28	-16.52
6	1	2	3	3	1	1	2	2	9.66	-12.81
7	1	3	1	2	1	3	2	3	7.38	-16.48
8	1	3	2	3	2	1	3	1	5.91	-14.40
9	1	3	3	1	3	2	1	2	6.58	20.05
10	2	1	1	3	3	2	2	1	6.28	-13.11
11	2	1	2	1	1	3	3	2	8.39	-19.22
12	2	1	3	2	2	1	1	3	8.96	-16.05
13	2	2	1	2	3	1	3	2	7.56	-16.47
14	2	2	2	3	1	2	1	3	9.24	-12.90
15	2	2	3	1	2	3	2	1	7.09	-20.67
16	2	3	1	3	2	3	1	2	6.73	-15.81
17	2	3	2	1	3	1	2	3	6.76	-19.95
18	2	3	3	2	1	2	3	1	8.53	-16.42

安定性評価の指標: SN比

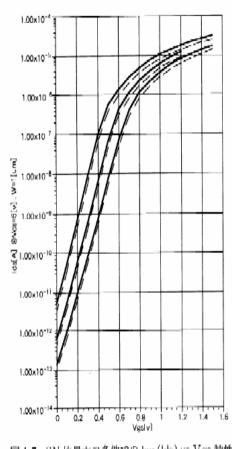


図4.7 SN 比最大の条件での log (lds) vs Vgs 特性

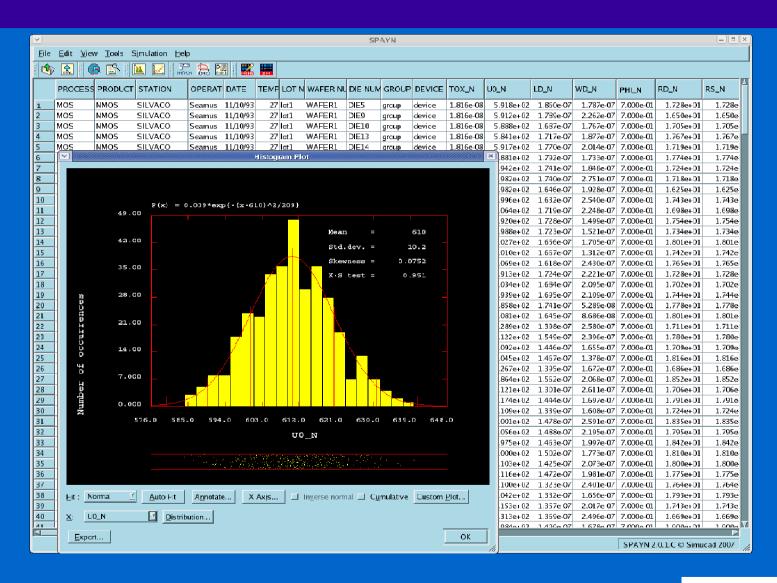
表 4.1 MOS トランジスタの制御因子と水準

因子	水 準	1	2	3
A リフロー温度	(°C)	高	低	
B ウェルイオン注人量	(ions/cm ²)	少	中	多
C ウェル拡散時間	(min)	短	中	長
D ゲート酸化時間 .	(min)	短	中	長
E LDD イオン注入量	(ions/cm ²)	少	中	多
F LDD イオン注入加速電	配压 (keV)	小	中	高
G LDD スペーサ膜厚	(µm)	薄	中	厚
<i>H</i> S/D イオン注入量	(ions/cm ²)	少	中	多

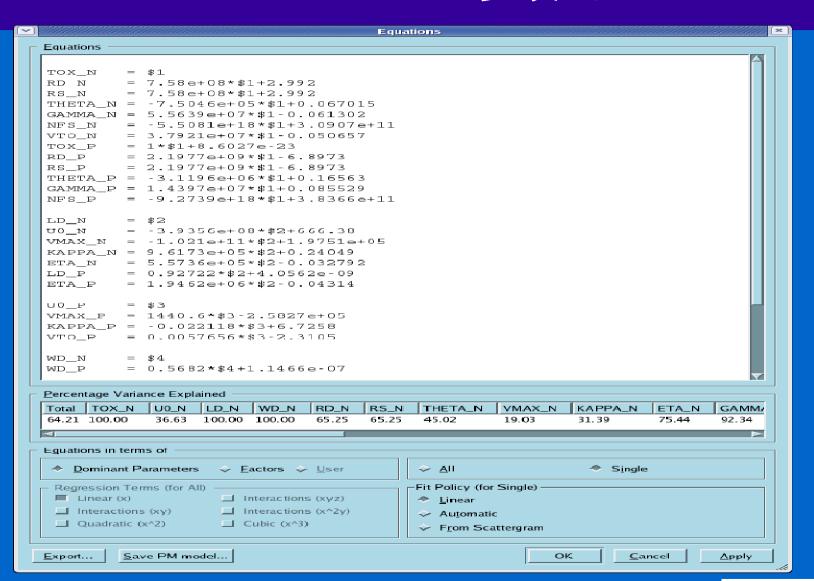
信号因子 (M): Vth アジャスト量

誤差因子(N): MOS トランジスタのチャネル長

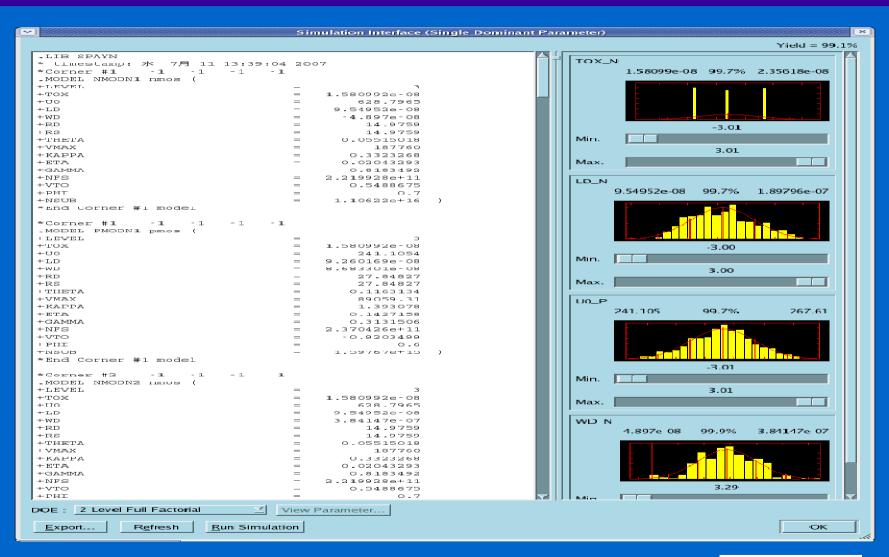
品質工学のLSI応用における課題

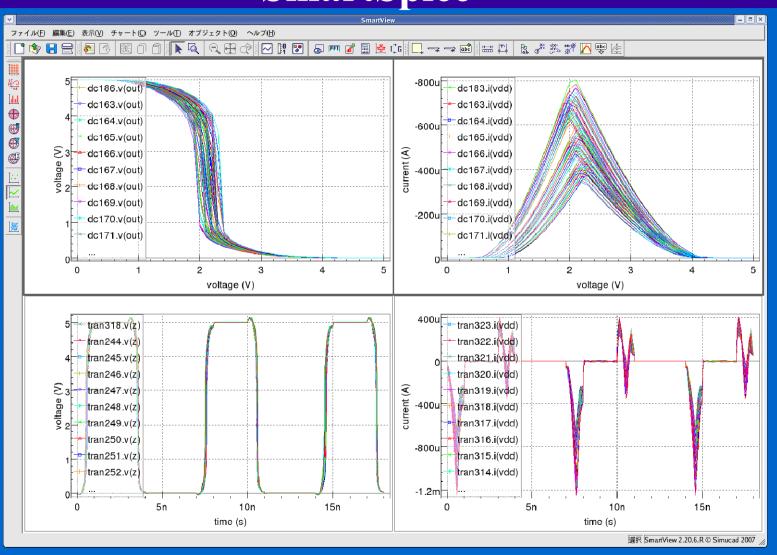

- ・超大規模なシステム(LSI)におけるシステム分割
- ・多数の入出力に対する評価関数の定義

概要


ばらつき原因を制御せずに対象特性のばらつきを減ら す手法の可能性

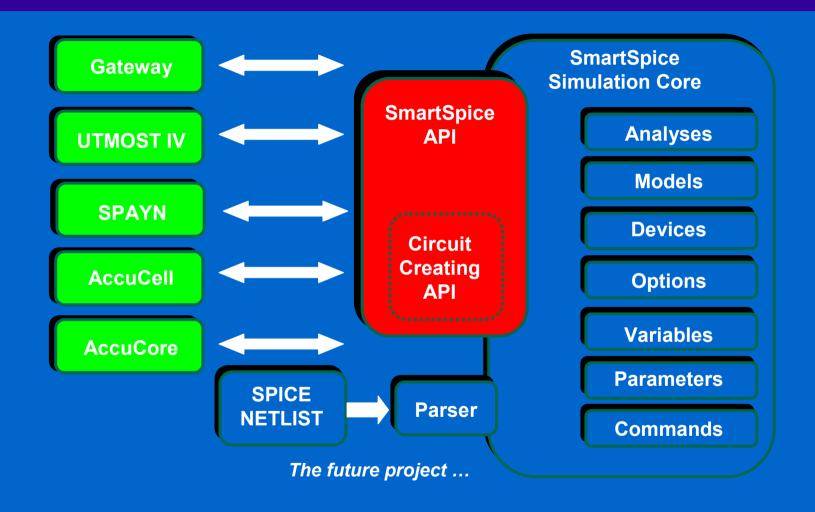
•Silvaco、Simucad社EDAプラットホーム ばらつきのモデル化必須


SPAYN統計処理プログラム


SPAYN: PCA多項式

SPAYN: PCAによるSpiceモデル生成

SPAYN: 3水準4元配置のインバータ特性 SmartSpice

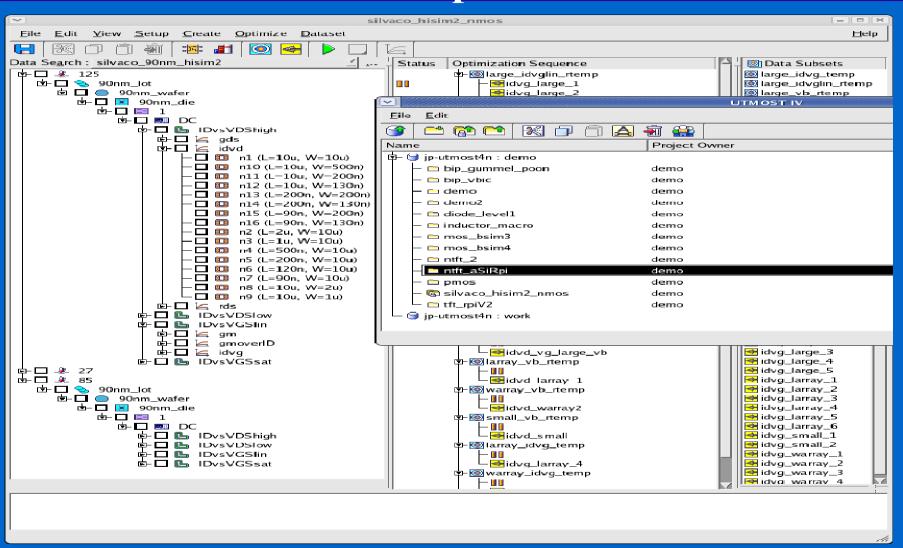


SPAYN: 多元配置実行時間

• SPAYN-SmartSpice従来手法: 約 0.5(秒)/回 11.43(総所要時間) – 7.16(GUIロード) = 4.3(秒)/ DC解析81回

• SPAYN-SmartSpice API: 1-2秒/DC解析81回

SmartSpice API


•

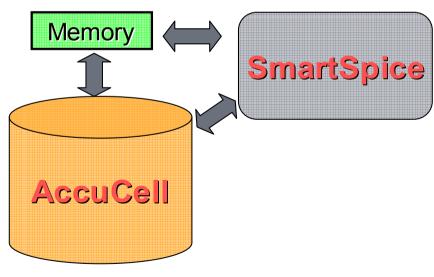
SmartSpice API

- Gateway、AccuCell、UTMOST IV、SPAYNはオーバヘッドなしに SmartSpice各機能(解析、デバイス、モデル、回路パラメータ、階 層識別構造)に直接アクセス
- 回路、およびシミュレーションに要するパラメータの変更を実行中 に行う
- Cellキャラクタライズでの所要時間を大幅に短縮
- オブジェクト再利用テクニックの採用により使用メモリが削減。オブジェクト(計算式、デバイス、モデル)は、いったん生成されるとSmartSpiceセッション中は常駐
- Simucad プロセス間通信 (SIPC)を利用する製品間に標準データフォーマットを提供

UTMOST IV:

データベースを持ったSpice パラメータ抽出

•


SmartSpice API: Cellキャラクタライズへの展開

AccuCell デザイン・フロー SmartSpice API 機能

SmartSpice API機能

- SmartSpice API機能を使用して、パラメータの変更を直接メモリー上で実行
- 再読み込みの時間が短縮され、さらなるスピードアップを実現!

SILVACO

SILVACO

SmartSpice API: AccuCell Cellキャラクタライズ所要時間の大幅な短縮

入力の傾き {0.1 0.2} (ns) 出力の負荷 {0.01 0.05} (pf) #USE_SMARTSPICE_API 0 (コメントアウトでAPIの実行)

SmartSpice API 非実行時:

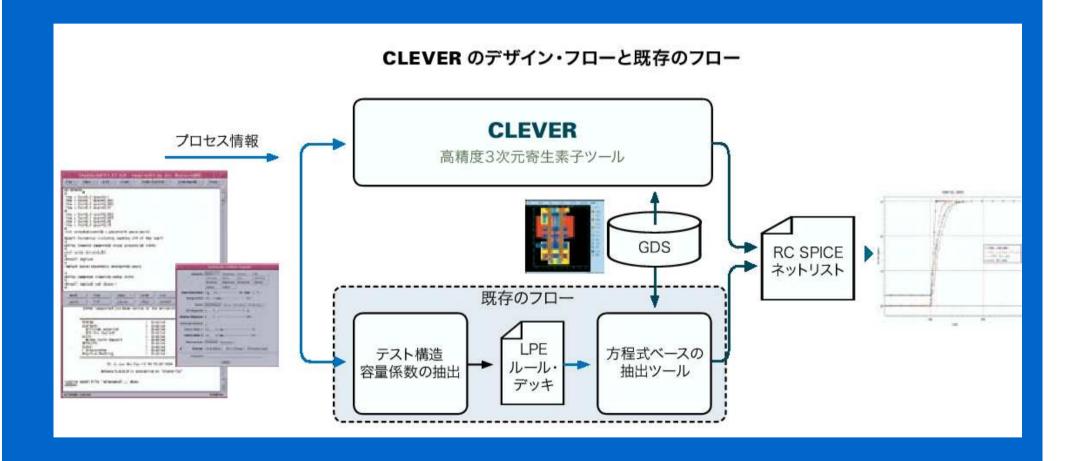
Model generation completed for pad. Total simulation time <u>159.672</u> seconds Library generation completed.

SmartSpice API 実行時:

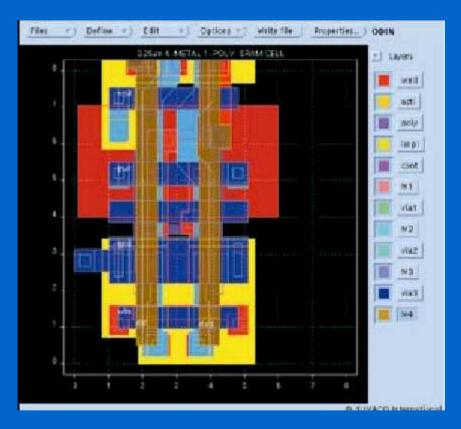
Model generation completed for pad. Total simulation time <u>16.298</u> seconds Library generation completed.

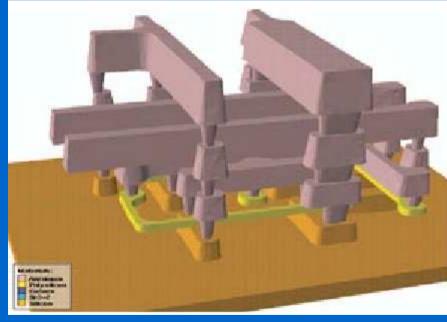
Cell libraryへの統計情報設定の可能性?

セルinv (Invertor) の Liberty^R format: part-1

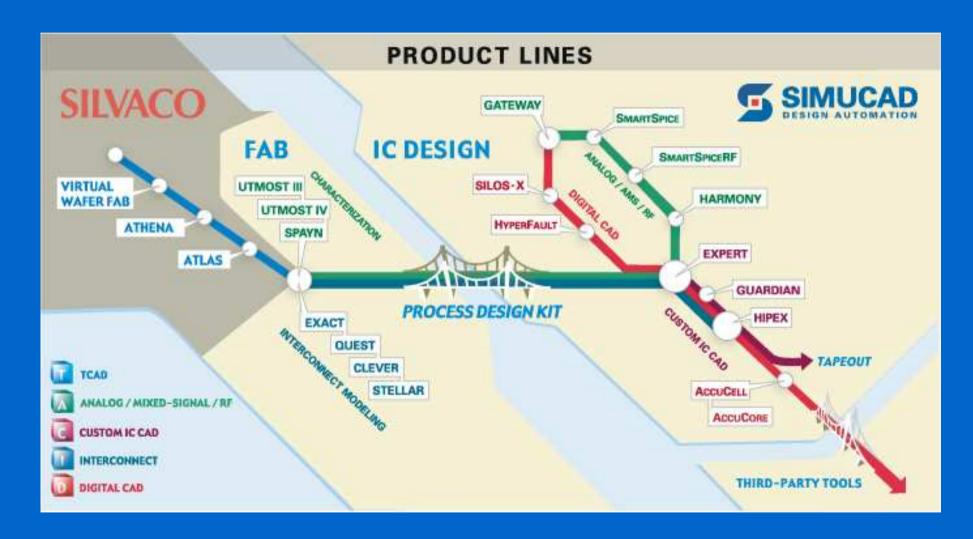

```
cell (inv) {
           area: 0;
           pin (a) {
       direction: input;
    capacitance: 0.01146;
         clock: false;
          pin (y) {
      direction: output;
       function: "(!a)";
      internal power () {
       related pin: "a";
rise power (pwr template2x2) {
 index 1 ("0.10000, 0.20000");
 index 2 ("0.01000, 0.05000");
 values ("0.08991, 0.21388", \(\mathbf{\xi}\)
         "0.11038, 0.22391");
fall power (pwr template2x2) {
 index 1 ("0.10000, 0.20000");
 index 2 ("0.01000, 0.05000");
 values ("-0.01988, -0.14139", ¥
        "-0.02664, -0.15009");
```

Cell libraryへの統計情報設定の可能性?


セルinv (Invertor) の Liberty format: part-2


```
timing() {
         related pin: "a";
   timing sense: negative unate;
   cell rise (delay template2x2) {
   index 1 ("0.10000, 0.20000");
   index 2 ("0.01000, 0.05000");
   values ("0.06774, 0.16861", ¥
           "0.09883, 0.19770");
rise transition (delay template2x2) {
   index 1 ("0.10000, 0.20000");
   index 2 ("0.01000, 0.05000");
   values ("0.09371, 0.31631", \(\xi\)
           "0.11797, 0.32794");
   cell fall (delay template2x2) {
   index 1 ("0.10000, 0.20000");
   index 2 ("0.01000, 0.05000");
   values ("0.02340, 0.08096", ¥
           "0.01212, 0.08635");
```

配線RCの影響



配線RC:Clever

SILVACO & SIMUCAD EDA Tools

まとめ

・ばらつきモデルを不要とする手法(品質工学)紹介とその課題

Silvaco、Simucad EDAプラットフォーム:SmartSpice回路シミュレータの高速APIがもたらす、回路特性ばらつきへの取り組みの可能性

・ばらつきのモデル化、LSIへの対応は広範囲に渡り コラボレーションが不可欠

References

- ・品質工学応用講座(日本規格協会)半導体製造の技術開発(1994年刊)
- ・(株)シルバコ・ジャパン: http://www.silvaco.co.jp
- Simucad Design Automation: http://www.simucad.com
- Silvaco International: http://www.silvaco.com