Analog and RF circuit techniques in nanometer CMOS

Bram Nauta University of Twente The Netherlands <u>http://icd.ewi.utwente.nl</u> b.nauta@utwente .nl

UNIVERSITY OF TWENTE.

Outline

- Introduction
- Balun-LNA-Mixer (BLIXER)
- Interferer robust SDR RX analog part
- Interferer robust SDR RX digital part
- Summary

Preferred: one wide band frontend IC: Software Defined

RF system trend (I)

• Challenges wide band circuits:

Minimal pre-filtering: No high Q tanks:

- Bandwidth will be ok for low GHz
- Towards Software Defined Radio

Outline

- Introduction
- Balun-LNA-Mixer (BLIXER)
- Interferer robust SDR RX analog part
- Interferer robust SDR RX digital part
- Summary

BLIXER

Balun + LNA + Mixer

[Blaakmeer, ISSCC2008]

BLIXER=Wide band receiver

Balun-LNA

Simultaneous:

- Single-to-Differential
- Balanced Gain
- Broadband input match (~1/g_{mCG})
- Noise Canceling
- Distortion Canceling

[Blaakmeer et al. ESSCIRC `07]

Noise Canceling

Bandwidth problem:

So, Don't make voltage gain @ RF

Use a MIXER

Mixer stacked on CG-CS stage

Chip Micrograph and PCB detail

Baseline 65nm CMOS 1.2V supply

Active area < 0.02 mm²

Conversion Gain, NF and S₁₁

Other BLIXER Performance

- Linearity:
 - IIP3 @ RF: -3 dBm
 - IIP2 @ RF: +20 dBm
- Quadrature accuracy:
 - Phase error $< 3^{\circ}$
 - Gain error < 1dB</p>
- LO leakage < -50 dBm
- Dissipation
 - 33mW (LO=500MHz)
 - 57mW (LO=7GHz)

Outline

- Introduction
- Balun-LNA-Mixer (BLIXER)
- Interferer robust SDR RX analog part
- Interferer robust SDR RX digital part
- Summary

A Software-Defined Radio Receiver Architecture Robust to Out-of-Band Interference

[Ru, ISSCC 2009]

Conventional Multi-Band Receiver

- RF filters for out-of-band interference, but bulky, costly, lossy, inflexible...
- Our goal: Software Defined Radio with relaxed RF filtering

Wideband Interfering: Nonlinearity

• Wideband LNA: also amplifies interference \rightarrow nonlinearity

Wideband Interfering: Harmonic Mixing

• Switching mixer: square-wave LO \rightarrow harmonic mixing

Concept: Use LP Filtering for Selectivity

 Voltage gain only at BB after low-pass filter (LPF) to filter blockers

 \rightarrow Keep low impedance over a wide band at node B

Realization: Wideband LNTA + Mixer + TIA

- LNTA: high G_m & high R_{out} → low noise small voltage swing at node B → good linearity
- Similar to [1], but now wideband and with blocker filtering

[1] Redman-White & Leenaerts, ESSCIRC07

Harmonic Rejection (HR) Mixer: Remove 3LO and 5LO

• Amplitude weighting + phase shifting \rightarrow emulate sine-LO

[2] Weldon et. al., ISSCC01

Problem: Amplitude and Phase Errors

3rd or 5th harmonic vector diagram

- Amplitude and phase errors
- \rightarrow unwanted harmonic residue \rightarrow degrade HR ratio
- How to make irrational ratio, e.g. $\sqrt{2}$, on chip?

2-Stage Polyphase HR: Concept

41/29=1.4138, √2=1.4142 → ε=0.03%

2-Stage Polyphase HR: Realization

- RF LNTA for 1st-stage weighting (2:3:2)
- BB resistor for 2nd-stage weighting (5:7:5)
- Nominally $\sqrt{2}$, what about influence of mismatch?

Reduced Effect of Amplitude Mismatch

- 2-stage polyphase → product of relative errors
- E.g. 2:3:2 $\rightarrow \alpha = 6\% \rightarrow 1^{st}$ -stage only: HR3=40dB 5:7:5 $\rightarrow \beta = 1\% \rightarrow 2$ -stage total: HR3=86dB

- LP blocker filtering: attenuates interference around LO
- 2-stage polyphase HR: robustly attenuates 3LO and 5LO

Zero-IF Receiver Prototype

Chip Photo

- 1mm² in 65nm
 CMOS
- VDD: 1.2V
- Current consumption:
 - Analog 33mA
 - Digital 17mA

Measured HR: 40 Chips HR Ratio @ 0.8G LO \star 5th 90 3rd HR Ratio (dB) 08 08 Min. HR5=64dB 60 Min. HR3=60dB 10 20 30 40 Sample

No trimming & calibration, no RF filtering

Measured Performance Summary

LO Frequency	0.4~0.9GHz		VDD	1.2V	
Gain	34.4±0.2dB		Current	Analog: 33mA	
DSB NF	4 dB \pm 0.5dB		Consumption	Digital (clock):	
S ₁₁ < -10dB	80M~5.5GHz			8mA @ 0.4GHz	
In/Out-of-band	+3dBm /			1/mA @ 0.9GHZ	
	+18dBm		Harmonic Rejection Ratio		
	+18dBm		Harmonic	Rejection Ratio	
IIP3 ¹ In/Out-of-band	+18dBm +46dBm /		Harmonic @ 0.	Rejection Ratio .8GHz LO	
IIP3 ¹ In/Out-of-band IIP2 ²	+18dBm +46dBm / +51dBm		Harmonic @ 0. 3 rd -order	Rejection Ratio .8GHz LO > 60dB (40 chips)	
IIP3 ¹ In/Out-of-band IIP2 ² IF Bandwidth	+18dBm +46dBm / +51dBm 12MHz		Harmonic @ 0. 3 rd -order 5 th -order	Rejection Ratio .8GHz LO > 60dB (40 chips) > 64dB (40 chips)	

¹ Out-of-band IIP3: two tones = 1.61G & 2.40GHz, LO = 819MHz² Out-of-band IIP2: two tones = 1.80G & 2.40GHz, LO = 601MHz

Conclusion:

A SDR Receiver Architecture Robust to Out-of-Band Interference

- Only voltage gain @ BB after low-pass filtering
 In-band IIP3 +3dBm & out-of-band IIP3 +18dBm
- 2-stage polyphase harmonic rejection technique
 - Robust: error = product of errors
 - Accurate multiphase clock
 - Minimum HR 60dB over 40 chips without calibration / trimming / RF filters

Outline

- Introduction
- Balun-LNA-Mixer (BLIXER)
- Interferer robust SDR RX analog part
- Interferer robust SDR RX digital part
- Summary

The Digital approach:

Harmonic Rejection Exploiting Adaptive Interference Cancellation

[Moseley, ISSCC 2009]

Harmonic Rejection RX: This work

To Digital Harmonic Rejection Algorithm (Baseband

processor)

The Basic Idea

Subtract interference (residual harmonic image responses) from received signal.

• Need interference estimate signal.

Adaptive Interference Cancelling (AIC)

- Adaptive "filter" aligns phase & amplitude.
- Minimizes <u>cross-correlation</u> v(n) and e(n).

AIC Algorithm 1/5

AIC Algorithm 2/5

AIC Algorithm 3/5

AIC Algorithm 4/5

AIC Algorithm 5/5

Comparison

	This work	Z. Ru ISSCC 2009 12.8
Rej. strongest	>80 dB ⁽¹⁾	>60 dB
Rej. other odd	>36 dB	>60 dB
Rej. even	>64 dB	>62 dB
Power frontend	45 mA @ 1.2 V (excl. ADCs)	50 mA @ 1.2 V (excl. ADCs)
Power DSP	<8.5 mA @ 1.2 V	N/A
(100 Msps)	(simulated)	
# ADCs	4 / 2 if AIC off	2

(1) If one harmonic interference image band is dominating.

Adaptive Interference Cancellation: Conclusions

- Dual-domain Harmonic Rejection Mixer (HRM) proposed:
 - Analog HRM + 4 ADCs + Digital AIC.
 - Strongest correlating harmonic image is removed
 - X-correlation -> independent of signal shape.
 - Stronger interferer -> more rejection
- Measurements:
 - First stage (analog) HR > 36 dB.
 - Dual domain HR3 <u>or</u> HR5 > 80 dB.
 - Limitation: even-order HR > 64 dB.

Outline

- Introduction
- Balun-LNA-Mixer (BLIXER)
- Interferer robust SDR RX analog part
- Interferer robust SDR RX digital part
- Summary

Summary

- BLIXER
 - Noise cancelling
 no voltage gain @ RF
- Interferer robust RX
 - No voltage gain @ RF
 - Filter before voltage gain
 - HR: error of errors

Summary

Digital Harmonic Rejection RX

- Adaptively kills the biggest harmonic interferer