IEEE 会員各位

                   IEEE MTT-S Kansai Chapter
                        Chair 石崎俊雄

IEEE MTT-S Kansai Chapter Distinguished Microwave Lecturer 講演会
IEEE MTT-S Kansai Chapter では,下記のように 2014-2016年
Distinguished Microwave Lecturer である Villanova University
のRobert H. Caverly 先生をお招きし,核磁気共鳴画像法 (MRI) に

●日時: 2014 年 11月 10日(月)  13:30 〜 15:00

●場所: 龍谷大学瀬田キャンパス 3号館104教室


●参加無料 (IEEE非会員の方も参加できます)

●講師:Professor Robert H. Caverly,(Villanova University)
 Magnetic Resonance Imaging (MRI) scanners are an important diagnostic
 tool for the medical practitioner. MRI provides a non-invasive means
 of imaging soft tissues and to obtain real-time images of the cardiovascular
 system and other dynamic changes in the human body. MRI scanners rely
 heavily on a number of topical areas of interest to Electrical Engineers:
 image processing, high speed computing and RF (radio frequency) systems
 and components. This presentation will focus on some of the RF aspects
 of the MR process and MR scanners. A primer on the physical phenomenon
 behind magnetic resonance will start the presentation and include a
 discussion of the origin of the MR signal. The need for the high static
 magnetic field (B0), the use of gradient coils for MR signal location,
 simple RF pulse sequences and how they are used in image construction
 will be covered. This MR image construction process and the control
 of the various steps that manipulate the atomic nuclei to generate the
 final MR diagnostic image put demanding constraints on RF equipment
 capabilities and these will be discussed, along with a high-level overview
 of the various components making up conventional MRI systems.
 This high-level overview will include a look at various examples of
 transmit and receive RF systems and examples of transmit and receive
 coils that make up MR scanners and system diagrams for both the
 RF transmit and receive paths. The talk with then narrow in scope
 to look at how these RF coils are modeled and controlled in both
 transmit and receive states and how these components are used
 for transmit/receive switching and patient and equipment protection.