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Microprocessor Evolution 

4004 Processor Westmere-EX Processor 

Year 1971 2011 

Transistors 2300 2.6 B 

Process 10 µm 32 nm 

Die area 12 mm2 513 mm2 

Die photos not at scale 
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Scaling Trends 

Transistor dimensions scale to improve performance, reduce 
power and reduce cost per transistor 

M. Bohr 
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Client Processor Trend: 
Integrated Graphics 

• Ivy Bridge 22nm client processor 
with monolithic integrated graphics  

• Up to 4 dual-threaded cores and 
8MB L3 cache 

• Dual channel DDR3 memory 
controller at 1600MT/s 

• Integrated PCIe interface (16 Gen3 
+ 4 Gen2 + 4 DMI lanes) 

- First Client CPU to support PCIe Gen3 

• Three independent displays 

• 1.4B transistors in 160mm2 die  

S. Damaraju, ISSCC 2012 
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Client Processor Trend: Integrated WiFi RF 
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• Sensitive RF circuits integrated with 32nm ATOM and PCH 

• Integration of traditional  III-V RF components 

-21dBm Power amp, and 34dBm T/R switch, 3.5dB NF LNA 

H. Lakdawala, ISSCC 2012 
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Server Processor Trends: More Cores 

Server core count increases every generation, 

while keeping within flat power budget 

0

4

8

12
N

u
m

b
e
r 

o
f 

co
re

s 

Tulsa 

Tigerton 

Dunnington 

Nehalem-EX 

Xeon® EX Processors 

65nm 45nm 32nm 

Westmere-EX 

7 



Stefan Rusu – July 2012 

Server Processor Trends: More Cache 
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Server Processors Power Trends 
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Voltage Scaling Has Slowed Down 
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30 Years of MOSFET Scaling 

Gate Length: 1.0 mm 35 nm 

Gate Oxide Thickness: 35 nm 1.2 nm 

Operating Voltage: 4.0 V 1.2 V 

1 mm 

Dennard 1974 Intel 2005 

Classical scaling ended in the early 2000s  

due to gate oxide leakage limits 
M. Bohr, ISSCC 2009 
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90 nm Strained Silicon Transistors 

High 
Stress 
Film 

NMOS 

SiGe SiGe 

PMOS 

 SiN cap layer              SiGe source-drain 

 Tensile channel strain Compressive channel strain 

Strained silicon provided increased drive currents,  

making up for lack of gate oxide scaling 
M. Bohr, ISSCC 2009 
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45 nm High-k + Metal Gate Transistors 

65 nm Transistor 45 nm HK+MG 

High-k + metal gate transistors  

break through gate oxide scaling barrier 

 SiO2 dielectric              Hafnium-based dielectric 

 Polysilicon gate electrode Metal gate electrode 

M. Bohr, ISSCC 2009 
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HK/MG Gate Leakage Reduction 

HK+MG significantly reduces gate leakage  

25x 1000x 

K. Mistry, IEDM 2007 
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6T SRAM Bit Cell Leakage Reduction 

  

SRAM bit cell leakage reduced ~10x 
M. Bohr, ISSCC 2009 
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Traditional 2-D planar transistors form a conducting channel in the  

silicon region under the gate electrode when in the “on” state 

Silicon 

Substrate 

Oxide 

Gate 

Source 

Drain 

High-k 

Dielectric 

Traditional Planar Transistor 

M. Bohr, 2011 
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Silicon 

Substrate 

Oxide 

Source 

Drain 

Gate 

3-D Tri-Gate transistors form conducting channels on three sides  

of a vertical fin structure, providing “fully depleted” operation 

22 nm Tri-Gate Transistor 
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32 nm Planar Transistors 22 nm Tri-Gate Transistors 

Gates Fins 

M. Bohr, 2011 

Transistor Scaling Trends 
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32nm planar transistors 22% faster than 45nm planar 

D. Perlmutter, ISSCC 2012 
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22nm planar transistors would have been only 14% faster 
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22nm Tri-Gate transistors provide improved performance at 
high voltage and unprecedented 37% speedup at low voltage 
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Intel Transistor Leadership 

 2003 2005 2007 2009 2011 

 90 nm 65 nm 45 nm 32 nm 22 nm 

SiGeSiGe

Invented  

SiGe  

Strained Silicon 

2nd Gen. 

SiGe  

Strained Silicon 

2nd Gen.  

Gate-Last 

High-k  

Metal Gate 

Invented  

Gate-Last 

High-k 

Metal Gate 

First to 

Implement  

Tri-Gate 
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Lithography Challenges 

Initial Production 

1000 

100 

10 
’89 ’91 ’93 ’95 ’97 ’99 ’01 ’03 ’05 ’07 ’09 ’11   ’13    ‘15 

Feature size 

13nm (EUVL) 

Lithography  
Wavelength 

193nm 
248nm 

Gap 

nm 

193 nm enhancements enable the 22 nm generation 
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Extreme Ultraviolet Lithography 

•EUV lithography uses extremely short wavelength light 

-Visible light – 400 to 700 nm 

-DUV lithography  – 193 and 248 nm 

-EUV lithography – 13 nm 

World’s First EUV  Mask EUV Micro Exposure Tool 
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Layout Restrictions 
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65 nm Layout Style 32 nm Layout Style 

Bi-directional features 

Varied gate dimensions 

Varied pitches 

Uni-directional features 

Uniform gate dimension 

Gridded layout 

M. Bohr, ISSCC 2009 
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450mm in the Era of Complex Scaling: 
 Must coordinate demand drivers,  

technical requirements and resources 

 

End-User  

Demand  
Drivers 

 

Integrated  

IC Maker  

Coordination 

Equipment  

& Materials  

Development  

University and  
Government  

Support 

Projected 2000 Wafer, circa 1975 (Gordon Moore, ISSCC ’03) 



Stefan Rusu – July 2012 

Within-Die Variations 

Systematic 

Die-to-Die Variations 

Random Placement 

of Dopant Atoms 

Lens Aberrations Resist Thickness 

Random 

Process Variations 
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Voltage and Temperature Variations 

• Voltage 

-Chip activity change 

-Current delivery—RLC 

-Dynamic: ns to 10-100µs 

-Within-die variation 

 

• Temperature 

-Activity & ambient change 

-Dynamic: 100-1000µs 

-Within-die variation 

Temp
(oC)
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Impact on Design Methodology 

Delay 

Path Delay 
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SRAM Cell Size Scaling 

32 nm, 0.171 um2 

45 nm, 0.346 um2  

Memory density continues to double every 2 years   
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Interconnect Trends 
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22nm Interconnects 

• M1 to M8 cross-section 

• M1-M6 use ultra-low-k ILD 
and self-aligned vias 
providing 13-18% 
capacitance reduction 

• Cross-section of integrated 
MIM capacitor 

• Enables capacitance density 
of >20fF/mm2 

33 

C. Auth, VLSI Symposium 2012 
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On-chip Interconnect Trend 

• Local interconnects scale with gate delay 

• Global interconnects do not keep up with scaling 
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Voltage and Frequency Scaling 

1 - Fixed VDD, Frequency Scaling: Linear Power Reduction 

2 - Fixed Frequency, VDD Scaling: Square Power Reduction 

3 - Voltage and Frequency scaling: Cubic Power Reduction 
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Memory and RF Vmin Reduction 

37 

• Write Assist circuit 
temporarily drops the 
array supply node to 
make it easier to write 
into the bit-cell 

• Both Cache and 
Register Files use this 
technique to improve 
write Vmin in 22nm 
Ivy Bridge processor 

WL (0 --> 1) 

Write  

Data ‘0’  

Data#  

0 --> 1 

Data 

1 --> 0 

Write 

Data# ‘1’ 

Shared 

across 

several cells 

BL BL# 

CVCC 

22nm transistor and circuit 
improvements enable Vmin 
reduction of  >100mV for 
Cache and 60mV for RF 

S. Damaraju, ISSCC 2012 
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NTV Pentium® Processor 
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S. Jain, ISSCC 2012 

Normal operating range  Subthreshold 

Ultra-low 
Power 

Energy 
Efficient 

High 
Performance 

280 mV 0.45 V 1.2 V 

3 MHz 60 MHz 915 MHz 

2 mW 10 mW 737 mW 

1500 Mips/W 5830 Mips/W 1240 Mips/W 
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Clock Gating 

• Save power by gating the clock when data activity is low 

• Requires detailed logic validation 
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Core Power Management 

Modulating the processor core voltage and 
frequency enables lower power states 

Gerosa, A-SSCC 2008 
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Multiple Voltage Domains 

Multiple voltage domains minimize power consumption 
across the core and uncore areas 

SMI SMI 

QPI QPI QPI QPI 

Fuse 

Core 
Supply 

Core 
Supply 

Core 
Supply 

Core 
Supply 

Uncore 
Supply 

Core Domain 
0.85-1.1V 
variable 

Un-Core Domain 
0.9-1.1V  

fixed 

I/O Domain  
1.1V 
fixed 

Rusu, ISSCC 2009 
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Multiple Clock Domains 

SMI SMI 

QPI QPI QPI QPI 

BCLK 

IO PLLs  

Un - - core PLL 

Filter PLL 

- - 

IO DLLs 

Core PLLs  

Three primary clock domains: core, un-core, I/O 

Total of 16 PLLs and 8 DLLs 
Rusu, ISSCC 2009 
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Subthreshold Leakage Trend 
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Leakage Reduction Techniques 

Stack Effect Body Bias Sleep Transistor 

Vdd 
Vbp 

Vbn -Ve 

+Ve 

Equal Loading Logic Block 

2-3X reduction 2-1000X reduction 
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Leakage is a Strong Function of Voltage 
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Sub-threshold and gate leakage reduce 
with lower supply voltage 
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Cache Sleep and Shut-off Modes 
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Leakage Shut-off Infrared Images 
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Cache Dynamic Shut-off 

49 

Normal Operation 

In the full-load state, all 16 
ways are enabled (green) 

Cache-by-Demand Operation 

Under idle or low-load states, 
cache ways are dynamically flushed 
out and put in shut-off mode (red) 

Tag ► 

Data ► 

Data ► 

Way ►     15   14    • •      3    2     1    0 

Controller 
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Three PMOS sleep transistor groups for sub-array leakage reduction 

Y. Wang, ISSCC 2009 

Cache Leakage Management 
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Cache Leakage Reduction Benefit 
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Leakage management circuit reduces sub-array leakage by 58% 
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Leakage Mitigation: Long-Le Transistors 
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• All transistors can be 

either nominal or long-Le 

• Most library cells are 

available in both flavors 

• Long-Le transistors are 

~10% slower, but have 

3x lower leakage 

• All paths with timing slack 

use long-Le transistors 

• Initial design uses only 

long channel devices 

Nominal Le 

Long Le 

(Nom+10%) 
S. Rusu, ISSCC 2006 
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Long-Le Transistors Usage Map 
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Power & Leakage Breakdown 
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Power Breakdown Leakage Breakdown 

Vcore 

54.6% 
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Active 

84% 

Leakage 
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Clock gating 

Run uncore at 0.9V 

Long channel device usage: 

58% cores, 85% uncore  

Reduction 

techniques 

S. Rusu, ISSCC 2009 

Nehalem-EX 45nm example 
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Core and Cache Recovery Example 

Defective core and cache slices can be disabled in horizontal pairs 

QPI0 QPI1 

Disabled 

Core5 

Core6 

Core7 

SMI 

Disabled 

Core2 

Core1 

Disabled Disabled 

System Interface 

SMI 

QPI2 QPI3 

Core0 

S. Rusu, ISSCC 2009 

55 



Stefan Rusu – July 2012 

• Disabled cores ► Power gated 

 

 

 

 

• Disabled cache slices ► All major arrays in shut-off 
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S. Rusu, ISSCC 2009 
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Core/Cache Recovery – Infrared Image 

All cores and cache slices are enabled 

S. Rusu, ISSCC 2009 
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Core/Cache Recovery – Infrared Image 

Shut-off 2 cores (top row) and 2 cache slices (bottom row) 

Disabled blocks are clock and power gated 

S. Rusu, ISSCC 2009 
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Microprocessor Package Evolution 

•1971 – 4004 Processor 

- 16-pin ceramic package 

-  Wire bond attach 

-  750 kHz I/O 

•2012 – Xeon® E5 Processor 

-  2011-contact organic package 

-  Flip-chip attach 

-  8.0 GHz I/O 
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Power Density Models 

With increasing power density and large on-die caches, 
detailed, non-uniform power models are required 
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Thermal Modeling 

Simulated power density  Infrared emission 
microscope measurement  

                                                                                 

                                       

 

D. Genossar and N. Shamir “Intel® Pentium® M Processor Power Estimation, 

Budgeting, Optimization and Validation”, Intel Technology Journal 5/2003 
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Thermal Sensors 
• Multiple temperature sensors 

-One in each core hot spot 

-One in the die center 

• Temperature information is 
available through PECI bus 
for system fan management 

QPI0 QPI1 

SMI SMI 

QPI2 QPI3 
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Power Management Unit 
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PMU controls processor voltage and frequency based 
on compute loading and thermal data 
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Future Directions 

• 2D mesh network with multiple Voltage / Frequency islands 

• Communication across islands achieved through FIFOs 

Ogras (CMU), DAC 2007 
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Fine Grain Power Management 

Cores with critical tasks 
Freq = f, at Vdd 
TPT = 1, Power = 1 

Non-critical cores 
Freq = f/2, at 0.7*Vdd 
TPT = 0.5, Power = 0.25 

Temporarily shut down 
TPT = 0, Power = 0 

0 
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f 0 f/2 0 
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0 
Permanently disabled 
TPT = 0, Power = 0 

25-core processor example: 
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Summary 

• Moore’s Law has fueled the worldwide technology revolution for 

over 40 years and will continue for at least another decade 

-0.7x transistor dimension scaling every two years 

-Tri-gate devices provide significant benefits 

• Continued microprocessor performance improvement 

depends on our ability to manage active power and leakage 

-Clock and power gate un-used or disabled blocks 

-Multiple voltage and clock domains  

-Dynamic voltage and frequency adjustment 

• Core and cache recovery enables multiple product options 

-Disabled cores and cache slices are clock and power gated 
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