Microprocessor Design in the Nanoscale Era

Stefan Rusu

Senior Principal Engineer Intel Corporation

IEEE Fellow

stefan.rusu@intel.com

©2012 Intel Corporation

Agenda

- Microprocessor Design Trends
- Process Technology Directions
- Active Power Management
- Leakage Reduction Techniques
- Packaging and Thermal Modeling
- Future Directions and Summary

Microprocessor Evolution

	4004 Processor	Westmere-EX Processor
Year	1971	2011
Transistors	2300	2.6 B
Process	10 µm	32 nm
Die area	12 mm ²	513 mm ²

Die photos not at scale

Scaling Trends

M. Bohr

Client Processor Trend: Integrated Graphics

- Ivy Bridge 22nm client processor with monolithic integrated graphics
- Up to 4 dual-threaded cores and 8MB L3 cache
- Dual channel DDR3 memory controller at 1600MT/s
- Integrated PCIe interface (16 Gen3 + 4 Gen2 + 4 DMI lanes)
 - First Client CPU to support PCIe Gen3
- Three independent displays
- 1.4B transistors in 160mm² die

S. Damaraju, ISSCC 2012

Client Processor Trend: Integrated WiFi RF

- Sensitive RF circuits integrated with 32nm ATOM and PCH
- Integration of traditional III-V RF components
 - -21dBm Power amp, and 34dBm T/R switch, 3.5dB NF LNA

H. Lakdawala, ISSCC 2012

Server Processor Trends: More Cores

Server core count increases every generation, while keeping within flat power budget

Server Processor Trends: More Cache

Cache size increases with every process generation

Server Processors Power Trends

Stefan Rusu – July 2012

Voltage Scaling Has Slowed Down

Agenda

- Microprocessor Design Trends
- Process Technology Directions
- Active Power Management
- Leakage Reduction Techniques
- Packaging and Thermal Modeling
- Future Directions and Summary

30 Years of MOSFET Scaling

Gate Length:	1.0 μm	35 nm
Gate Oxide Thickness:	35 nm	1.2 nm
Operating Voltage:	4.0 V	1.2 V

90 nm Strained Silicon Transistors

NMOS

SiN cap layer Tensile channel strain

PMOS

SiGe source-drain Compressive channel strain

M. Bohr, ISSCC 2009

45 nm High-k + Metal Gate Transistors

65 nm Transistor

SiO₂ dielectric Polysilicon gate electrode

45 nm HK+MG

Hafnium-based dielectric Metal gate electrode

M. Bohr, ISSCC 2009

HK/MG Gate Leakage Reduction

(intel)

15

K. Mistry, IEDM 2007

6T SRAM Bit Cell Leakage Reduction

Stefan Rusu – July 2012

M. Bohr, ISSCC 2009

Traditional Planar Transistor

Traditional 2-D planar transistors form a conducting channel in the silicon region under the gate electrode when in the "on" state

M. Bohr, 2011

22 nm Tri-Gate Transistor

3-D Tri-Gate transistors form conducting channels on three sides of a vertical fin structure, providing "fully depleted" operation

Transistor Scaling Trends

32 nm Planar Transistors

22 nm Tri-Gate Transistors

M. Bohr, 2011

Transistor Gate Delay

32nm planar transistors 22% faster than 45nm planar

D. Perlmutter, ISSCC 2012

Stefan Rusu – July 2012

Transistor Gate Delay

22nm planar transistors would have been only 14% faster

Transistor Gate Delay

22nm Tri-Gate transistors provide improved performance at high voltage and unprecedented 37% speedup at low voltage

Intel Transistor Leadership

Lithography Challenges

193 nm enhancements enable the 22 nm generation

Stefan Rusu – July 2012

Extreme Ultraviolet Lithography

• EUV lithography uses extremely short wavelength light

- -Visible light 400 to 700 nm
- -DUV lithography 193 and 248 nm
- -EUV lithography 13 nm

World's First EUV Mask

Stefan Rusu – July 2012

Layout Restrictions

65 nm Layout Style

Bi-directional features Varied gate dimensions Varied pitches

32 nm Layout Style

Uni-directional features Uniform gate dimension Gridded layout

M. Bohr, ISSCC 2009

450mm in the Era of Complex Scaling: Must coordinate demand drivers, technical requirements and resources

Stefan Rusu – July 2012

Process Variations

Resist Thickness

Lens Aberrations

Random Placement of Dopant Atoms

Voltage and Temperature Variations

- Voltage
 - -Chip activity change
 - -Current delivery—RLC
 - -Dynamic: ns to 10-100µs
 - -Within-die variation
- Temperature
 - -Activity & ambient change
 - -Dynamic: 100-1000µs
 - -Within-die variation

Impact on Design Methodology

Major paradigm shift from deterministic design to probabilistic / statistical design

Stefan Rusu – July 2012

SRAM Cell Size Scaling

Memory density continues to double every 2 years

Interconnect Trends

Stefan Rusu – July 2012

22nm Interconnects

- M1 to M8 cross-section
- M1-M6 use ultra-low-k ILD and self-aligned vias providing 13-18% capacitance reduction

- Cross-section of integrated MIM capacitor
- Enables capacitance density of >20fF/mm²

C. Auth, VLSI Symposium 2012

On-chip Interconnect Trend

- Local interconnects scale with gate delay
- Global interconnects do not keep up with scaling

Agenda

- Microprocessor Design Trends
- Process Technology Directions
- Active Power Management
- Leakage Reduction Techniques
- Packaging and Thermal Modeling
- Future Directions and Summary

Voltage and Frequency Scaling

3 - Voltage and Frequency scaling: Cubic Power Reduction

Memory and RF Vmin Reduction

- Write Assist circuit temporarily drops the array supply node to make it easier to write into the bit-cell
- Both Cache and Register Files use this technique to improve write Vmin in 22nm Ivy Bridge processor
- 22nm transistor and circuit improvements enable Vmin reduction of >100mV for Cache and 60mV for RF

S. Damaraju, ISSCC 2012

NTV Pentium[®] Processor

Ultra-low Power	Energy Efficient	High Performance
280 mV	0.45 V	1.2 V
3 MHz	60 MHz	915 MHz
2 mW	10 mW	737 mW
1500 Mips/W	5830 Mips/W	1240 Mips/W

Technology	32nm High-K Metal Gate	
Interconnect	1 Poly, 9 Metal (Cu)	
Transistors	Core:6M	
Core Area	2mm ²	
Package	951 Pins FCBGA11	

S. Jain, ISSCC 2012

Clock Gating

- Save power by gating the clock when data activity is low
- Requires detailed logic validation

Core Power Management

Multiple Voltage Domains

Multiple voltage domains minimize power consumption across the core and uncore areas

Rusu, ISSCC 2009

Multiple Clock Domains

Three primary clock domains: core, un-core, I/O Total of 16 PLLs and 8 DLLs Rusu, ISSCC 2009

(intel)

Stefan Rusu – July 2012

Agenda

- Microprocessor Design Trends
- Process Technology Directions
- Active Power Management
- Leakage Reduction Techniques
- Packaging and Thermal Modeling
- Future Directions and Summary

Subthreshold Leakage Trend

Leakage Reduction Techniques

Leakage is a Strong Function of Voltage

with lower supply voltage

S. Rusu, US Pat. 7,657,767

Leakage Shut-off Infrared Images

16MB part

8MB part

4MB part

Leakage reduction ► 3W (8MB)

5W (4MB)

Stefan Rusu – July 2012

Cache Dynamic Shut-off

<u>Normal Operation</u> In the full-load state, all 16 ways are enabled (green)

Cache-by-Demand Operation

Under idle or low-load states, cache ways are dynamically flushed out and put in shut-off mode (red)

Three PMOS sleep transistor groups for sub-array leakage reduction

Y. Wang, ISSCC 2009

Stefan Rusu – July 2012

Cache Leakage Reduction Benefit

Fast corner / 1.0V / 110C

Leakage management circuit reduces sub-array leakage by 58%

Leakage Mitigation: Long-Le Transistors

- All transistors can be either nominal or long-Le
- Most library cells are available in both flavors
- Long-Le transistors are ~10% slower, but have 3x lower leakage
- All paths with timing slack use long-Le transistors

S. Rusu, ISSCC 2006

 Initial design uses only long channel devices

Long-Le Transistors Usage Map

Massive long-channel usage in uncore reduces leakage

Power & Leakage Breakdown

Nehalem-EX 45nm example

S. Rusu, ISSCC 2009

Core and Cache Recovery Example

Defective core and cache slices can be disabled in horizontal pairs

S. Rusu, ISSCC 2009

Minimize Leakage in Disabled Blocks

Disabled cores ► Power gated

Disabled cache slices ► All major arrays in shut-off

Core/Cache Recovery – Infrared Image

All cores and cache slices are enabled

Stefan Rusu – July 2012

57

S. Rusu, ISSCC 2009

Core/Cache Recovery – Infrared Image

Shut-off 2 cores (top row) and 2 cache slices (bottom row) Disabled blocks are clock and power gated

S. Rusu, ISSCC 2009

Stefan Rusu – July 2012

Agenda

- Microprocessor Design Trends
- Process Technology Directions
- Active Power Management
- Leakage Reduction Techniques
- Packaging and Thermal Modeling
- Future Directions and Summary

Microprocessor Package Evolution

- 1971 4004 Processor
 - 16-pin ceramic package
 - Wire bond attach
 - 750 kHz I/O

- 2012 Xeon[®] E5 Processor
 - 2011-contact organic package
 - Flip-chip attach
 - 8.0 GHz I/O

Power Density Models

With increasing power density and large on-die caches, detailed, non-uniform power models are required

Thermal Modeling

Simulated power density

Infrared emission microscope measurement

D. Genossar and N. Shamir "Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization and Validation", Intel Technology Journal 5/2003

Thermal Sensors

- Multiple temperature sensors
 One in each core hot spot
 One in the die center
- Temperature information is available through PECI bus for system fan management

Stefan Rusu – July 2012

Power Management Unit

PMU controls processor voltage and frequency based on compute loading and thermal data

Agenda

- Microprocessor Design Trends
- Process Technology Directions
- Active Power Management
- Leakage Reduction Techniques
- Packaging and Thermal Modeling
- Future Directions and Summary

Future Directions

- 2D mesh network with multiple Voltage / Frequency islands
- Communication across islands achieved through FIFOs

Ogras (CMU), DAC 2007

Fine Grain Power Management

25-core processor example:

Summary

- Moore's Law has fueled the worldwide technology revolution for over 40 years and will continue for at least another decade
 - -0.7x transistor dimension scaling every two years
 - -Tri-gate devices provide significant benefits
- Continued microprocessor performance improvement depends on our ability to manage active power and leakage
 - -Clock and power gate un-used or disabled blocks
 - -Multiple voltage and clock domains
 - -Dynamic voltage and frequency adjustment
- Core and cache recovery enables multiple product options
 - -Disabled cores and cache slices are clock and power gated

