Designing CMOS Wireless System-on-a-chip – analog/RF perspective

David Su, <u>dsu@qca.qualcomm.com</u> Qualcomm Atheros, San Jose, California

Japan, Nov 2011

Outline

- System-on-a-Chip Overview
 - Transceiver Building Blocks
 - Integration issues
- System-on-a-Chip Example:
 - A 1x1 802.11n WLAN SoC
 - Terrovitis et al, 2009 ESSCirC
- Conclusion

SoC Trends: WLAN (1996)

Prism WLAN chipset (Harris Semi) AMD App Note (www.amd.com)

(c) D. Su, 2011

WLAN Integration Story

Soc Trends: WLAN (2011)

Abdollahi-Alibeik et al, ISSCC 2011 (Atheros)

(c) D. Su, 2011

Advantages of SoC Integration

- Increased functionality
- Smaller Size / Form Factor
- Lower Power
 - On-chip interface
- Lower Cost
 - Single package
 - Ease of manufacture
 - Minimum RF board tuning
 - Reduced component count
 → Improved reliability

Cost of WLAN Throughput

(c) D. Su, 2011

Evolution of 802.11 WLAN PHY Rates

Wireless SoC Block Diagram

Low Noise Amplifier

- Low Noise Figure
 - Sufficient gain
- Able to accommodate large blockers
 - Large Dynamic Range
 - Large Common-mode Rejection
 - High Linearity

LNA with Cascoded Diff Pair

LNA with Switchable Gain

Zargari et al, JSSC Dec 2004 (Atheros)

(c) D. Su, 2011

Power Amplifier

General Specifications

Output power: Saturated power, P1dB

- **Efficiency**
- □ Linearity: OIP3/IM3, Harmonics
- **Stability/Robustness: VSWR**

Digital Communications

 \Box Large Peak to Average Ratio \rightarrow linearity

- **Transmit Spectral Mask modest linearity**
- **Error Vector Magnitude (EVM) high linearity**

Peak to Average Ratio

Cascoded Power Amplifier

- Cascoding advantages
 3.3V supply voltage
 Stability
- Capacitive Level-shift
- Differential
 Off-chip balun

Su et al, ISSCC 2002 (Atheros)

(c) D. Su, 2011

Cascoded Power Amplifiers

Zargari et al, JSSC Dec 2002 (Atheros)

(c) D. Su, 2011

Measured Power vs Data Rate

System-on-a-Chip Integration

Digital Assistance: Calibration Techniques

Digital Interference: Noise Coupling

Digital Assisted Analog/RF Design

Digital Assisted Analog/RF Design

- Using digital logic to compensate/correct for imperfections of analog and RF circuits to enable:
 - Lower power,
 - smaller area,
 - improved reliability of analog/RF

→ resulting in lower cost and improved performance

Digital Assistance: Calibration Issues

- Desired properties of calibration:
 - Independent of temperature, aging, frequency
 - Inexpensive (in time, area and power) to implement
 - Do not interfere with system performance
- Wireless System-on-a-Chip advantage:
 - Calibration building blocks already exist on-chip: transmitter and receiver, data converters, and CPU
 - No package pin limitation

Calibration Techniques

- Fest Signal
 - Dedicated test signals from DAC: Tx carrier leak
 - RF loop back: Receive filter bandwidth
 - Thermal noise: Rx Gain
 - Live Rx (signal) traffic: Rx I/Q mismatch
- > Observation Signal
 - Dedicated ADC
 - Implicit ADC: Comparator
- > Tuning Mechanism
 - Dedicated DAC
 - Implicit DAC:
 - Selectable capacitors, resistors, transistors
 - Digital tuning (if signal is already digital)

RF loop back: Tx Carrier Leak

- Test signal: Tx DAC
- Observation signal: RF loop back to Rx ADC
- Tuning: Carrier Leak Correction at Tx DAC input

Calibrating Low-pass gm-C Filter

System-on-a-Chip Integration

Digital Assistance: Calibration Techniques ✓ Digital Interference: Noise Coupling

Digital Interference

Digital Interference: Noise Coupling

Aggressor

Noise Source

Pacify the aggressor

- Reduce noise by turning off unused digital
 - Clock gating
 - Avoid oversized digital buffers
- Stagger digital switching
 - Avoid large number of digital pads switching simultaneously
 - Avoid switching digital logic at the same sampling instance of sensitive analog

Noise Destination

Strengthen the victim

- Increase immunity of sensitive analog and RF circuits
 - Common-mode noise rejection
 → Fully differential topology
 - Power Supply noise rejection
 - \rightarrow Good PSRR
 - → Dedicated on-chip voltage regulators
- Avoid package coupling by keeping sensitive nodes on chip (Example: VCO control voltage)

Coupling Mechanism

Deter the accomplice

- Power Supply noise coupling
 - Separate or star-connected power supplies
- Capacitive or inductive coupling to sensitive signals and bias voltages
 - Careful routing of signal traces to reduce parasitic capacitive/inductive coupling
 - Use ground return-path shields
- Substrate coupling induced V_{TH} modulation
 - Low-impedance substrate connection
 - Guard rings
 - Physical separation
 - Deep Nwell

Frequency Synthesizer

A 1x1 802.11n WLAN SoC with fully integrated RF Front-end Utilizing PA Linearization

Manolis Terrovitis, Michael Mack, Justin Hwang, Brian Kaczynski, Gabriel Tseng*, Bor-Chin Wang*, Srenik Mehta, David Su

> Atheros Communications, Santa Clara, California *Atheros Communications, Hsinchu, Taiwan

From presentation by Dr. Manolis Terrovitis at the 35th European Solid-State Circuits Conference in Athens on September 16, 2009

SoC Design Goals

- Design a low cost, small form factor, and high performance 802.11 system
- Eliminate external components (Power Amplifier, Low-Noise Amplifier, Transmit/Receive switch)
- Power Amp Linearization for maximum transmit linear output power and efficiency

SoC Block Diagram

Ref: Zargari et al, Dec. 2008, JSSC.

Terrovitis et al, ESSCIRC 2009 (Atheros)

Combined RF Frontend

•PA, LNA, T/R Switch
•Large swing
•Low impodence

Low impedance

Terrovitis et al, ESSCIRC 2009 (Atheros)

Combined RF Frontend

Linearized RF Power Amp

Transistors are *cheap* on an System-ona-Chip

 Use linearization technique to improve linearity and efficiency of the Power Amplifier

Envelope Feedback

- Linearizes Gain
- Fixes Gain over process and temperature

Envelope FB Linearization Issues

- Phase distortion is not corrected
- Envelope detectors do not respond for low signal
 - Loop opens at low amplitude
 - Offset Correction

Implemented Feedback Loop

Fast Envelope Detector

Terrovitis et al, ESSCIRC 2009 (Atheros)

PA Driver with Variable Load

Sensitivity Measurements

System NF (LNA1/LNA2) = 5.5dB / 3.5dB

Channel

15

Output Power Measurements

Max EVM and Mask Compliant Power vs Data Rate

Terrovitis et al, ESSCIRC 2009 (Atheros)

Chip Micrograph

- 0.13µm CMOS
- 68 pin QFN package
- 19mm² Silicon Area
- Current Consumption from 3.3V
 - RX: 210mA
 - TX: 455mA @
 Pout=18.4dBm,
 HT20, EVM=-28dB

Conclusions

- CMOS has become the technology of choice for integrated radio systems
- Integrating a radio in mixed-Signal System-on-a-Chip is no longer a dream but a reality
- Wireless SoC can provide significant advantages in size, power, and cost

Continuing Challenges

- Multi-mode radios to support several wireless standards
- RF design in scaled CMOS
 - Reduced supply voltage: voltage, current, time...
 - nanometer transistors: leaky, low gm.ro
 - How to reduce area and power
 - More "digital assistance"
- Challenges of radio designers have been, are, and will continue to be:
 - Power consumption / Battery life
 - Range
 - Data rate
 - Cost

Acknowledgments

 Many of the slides are based on previous presentations from Qualcomm Atheros and Stanford University, especially those by:

Masoud Zargari, Manolis Terrovitis, Srenik Mehta, William Si, William McFarland, Lalitkumar Nathawad Richard Chang Amirpouya Kavousian