先端CMOSアナログ集積回路の課題と今後の展開

CMOSによる回路実現を前提として....

大阪大学 谷口研二

概要

I.MOSFETを用いた増幅回路 Ⅱ.高速アナログ回路設計のポイント Ⅲ.CMOSアナログ回路のレイアウト

常にMOSFET構造を意識しながら.....

I.MOSFETを用いた増幅回路

- 1. MOSFETの基本構造
- 2. MOS素子を用いた増幅回路
- 3. 増幅回路の周波数特性
- 4. 半導体ロードマップと新構造デバイス

CMOSアナログ回路の電源電圧の推移

1.MOSFETの基本構造

(ゲート電極) 多結晶シリコン 側壁酸化膜 素子間分離酸化膜 高濃度不純物層 ドレイン

出力抵抗 r_o と相互コンダクタンス g_m

(アナログ回路にとって重要な2つのパラメータ)

$$I_D = \frac{\beta}{2} \left(V_{GS} - V_T \right)^2 \left(1 + \lambda V_{DS} \right)$$

ドレイン電圧
$$V_{DS}$$

$$r_o = \left(\frac{dI_D}{dV_{DS}}\right)^{-1} \approx \frac{1}{\lambda I_D}$$

$$dI_D = \sqrt{2} \, dI_D$$

$$g_{m} = \frac{dI_{D}}{dV_{GS}} \approx \sqrt{2\beta I_{D}}$$

ポイント: バイアス電流/_Dの関数

MOSFETの寄生容量

(MOSFETの詳細な小信号モデル)

電位に依存する

--- 高速動作の鍵 ---

- ①gmの大きな素子を用いる
- ②負荷容量Contを低減する

チャネル幅Wの大きな素子のレイアウト

消費電力と高速性とのトレードオフ

MOSFETのデバイスパラメータ

まとめると....

目安(最先端技術)

$$\frac{C_{gd}}{C_{gs}} \approx 0.3$$

$$\frac{C_{dsub}}{C_{as}} \approx 1.5$$

MOSFETの微細化

素子の微細化によってg_m, r_o, Cはどのように変化するのか

素子が小さくなると....ドリフト速度の飽和

オームの法則適用領域

素子内の平均電界

$$\frac{1.5V}{0.15 \, \mu m} = 10^5 \, V \, / \, cm$$

長チャネル*MOSFET*

$$I_{Dsat} = \frac{W}{2L} \mu_o C_{ox} (V_{GS} - V_T)^2$$

短チャネルMOSFET

$$I_{Dsat} = \frac{W\mu_{o}C_{ox}(V_{GS} - V_{T})^{2}}{2L[1 + \theta(V_{GS} - V_{T})]}$$

より一般的な式

ドレイン電圧 V_D

長チャネルMOSFET

$$I_{Dsat} = \frac{W}{2L} \mu_o C_{ox} (V_{GS} - V_T)^2$$

ドレイン電圧 V_D

g_mのゲート電圧依存性

電気的特性のまとめ

短チャネルMOSFET

n=0.8~0.5

$$r_o = \left(\frac{dI_D}{dV_{DS}}\right)^{-1} \approx \frac{1}{\lambda I_D^n}$$

$$g_m = \frac{dI_D}{dV_{GS}} \approx v_s W C_{ox} \quad -$$

$$\omega_u o rac{g_{_m}}{C}$$
 微細化が鍵 I_D に依存しない

MOSFETの非平衡輸送現象

究極の高速回路を設計を行う際に考慮すべきポイント NQS(Non-Quasi-Static)効果

MOSFETの非平衡輸送

分布定数回路

MOSFETの非平衡輸送

Time

半導体ロードマップ

	2004	2005	2006	2007	2008	2009	2012	
ゲート長	65	53	45	37	32	28	20	nm
EOT	2.1	2.1	1.9	1.6	1.5	1.4	1.2	nm
ゲート空乏	0.8	0.7	0.7	0.7	0.4	0.4	0.4	nm
ゲートリーク	0.5	0.9	1.5	2.2	3.1	4.8	10	0.01A/cm ²
オフリーク	10	15	20	25	30	40	60	pA/um
移動度増大	1.0	1.0	1.0	1.0	1.3	1.3	1.3	
飽和速度増大	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
相対性能	1.17	1.42	1.64	1.88	2.39	2.64	4.10	基準2003年

メタルゲートFD-SOI

NQS(Non-Quasi-Static)効果のまとめ

MOSFETの改良(手軽版)

 i_d が v_{gs} に追随しない(信号遅延)

(2007年頃までに....)

多結晶シリコンゲート → 金属ゲート(低抵抗) 遅延時間の短縮

なぜ金属ゲート?

なぜ金属ゲート?

- 1. デュアルメタル P-MOS,n-MOS
- 2. シングルメタル
- 3. シリサイド

なぜ高誘電膜?

高誘電膜の問題点

高誘電膜材料 HfSiON, HfO $_{2}$, HfAlO $_{x}$, Al $_{2}$ O $_{3}$ など

問題点

- 1. 移動度の低下(50%~95%)
- 2. Boronの突き抜け(CVD堆積膜)
- 3. 微量酸素雰囲気中の熱処理で 低誘電率層がHigh-k/Si界面に 形成される。

防止策:

Si

Ge

バリア層(Si₃N₄, Al₂O₃)の使用

- 4. 高温熱処理が困難 (アモルファス→結晶)
- 5. フェルミレベル・ピニング (しきい値が高め)→ 金属ゲート材料

ひずみの印加方法

<mark>ひずみSi膜(Strained Si)</mark>

·結晶構造
·格子間隔

ひずみSi

→ 電気が流れ易い

線形特性領域に差がみられる

プロセス技術者と回路技術者と間の誤解

将来の新構造デバイス

- 1. SOI MOSFET
- 2. ソース・ドレイン領域を工夫したデバイス
- 3. マルチゲート構造

SOI-MOSFETの占有面積は小さい(1) (素子間分離が容易) n-MOSFET p-MOSFET p-MOSFET p型基板 マスク枚数減 Latch-up free

SOI-MOSFETの占有面積は小さい(2) (ウエルが不要)

SOI-MOSFETの電流駆動力

SOI-MOSFETはドレイン容量が小さい (高速動作に適している)

ドレイン容量
$$C_D^{Bulk} = \varepsilon_{Si} \frac{S_D}{d_{Si}}$$
 $>$ $C_D^{SOI} = \varepsilon_{ox} \frac{S_D}{t_{SiO_2}}$

Ⅱ.高速アナログ集積回路設計のポイント

- 1.素子のマッチング(入力差動対)
- 2.オペアンプの最大GBWについて
- 3.PSRR(Power Supply Rejection Ratio)

1.素子特性のミスマッチの要因

- ○系統的に特性がばらつく
- ○ランダムな統計的ばらつき
- 2.ミスマッチを軽減する方法

1.MOS素子のマッチング

カレントミラー回路

 $I_D = \frac{\beta}{2} (V_{GS} - V_T)^2$

ランダムな統計的ばらつき

不純物原子数のゆらぎが原因

K.R.Laksmlkumar, R.A.Hadaway, and M.A.Copeland, "Characterization and Modeling of Mismatch in MOS transistors for Precision Analog Design," IEEE Journal of Solid State Circuits, SC-21, 1057 (1986).
 M.J.M.Pelgrom, A.C.J.Duinmaijer, and A.P.G.Welbers, "Matching Properties of MOS transistors," IEEE Journal of Soilid-State Circuits, SC-24, 1433 (1989)

β値ばらつきの微視的な原因

MOSFET対の精度

しきい値ばらつきのゲート面積依存性

しきい値のばらつき ---統計的な不純物原子数のゆらぎ---

T.Mizuno, J.Okamura and A.Toriumi, "Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs," IEEE Trans. On Electron Devices, ED-41, 2216 (1994)

入力オフセット電圧を小さくするには

入力差動対

面積(LW)が一定の下

オフセット電圧の低減法

M1, M2に同一電流が流れる条件

ゲート面積LWを大きくする $\rightarrow \Delta V_T$ が小さくなる

W/Lを大きくする $\rightarrow V_{GS}$ - V_T が小さくなる

カレントミラー回路の電流ミスマッチの低減法

しきい値 V_T と β 値の双方が影響する

$$\frac{\Delta I_D}{I_D} = \sqrt{4 \left(\frac{\Delta V_T}{V_{GS} - V_T}\right)^2 + \left(\frac{\Delta \beta}{\beta}\right)^2}$$

電流ミスマッチを小さくするには(2)

カレントミラー回路の配置法(1)

2. オペアンプの最大GBWについて

与えられたTechnologyの下で.... 最高速オペアンプを実現するには

MOSFETの遮断周波数

$$(\omega_T = 2\pi f_T)$$

 $:: \omega_{Tp} \approx 2\pi \times 5GHz$

pチャネルMOSFETをバイパス

さらに大きなGBWを得るには...

(信号経路にカレントミラーを避ける)

4.PSRR(Power Supply Rejection Ratio)を確保するには

高周波領域では寄生容量が問題

PSRR (Power Supply Rejection Ratio)

<mark>一般的な全差動オペアンプ</mark>

準備運動

低周波

$$v_{GS} = \frac{\frac{1}{g_m}}{r_o + \frac{1}{g_m}} v_{DD} \approx \frac{1}{g_m r_o} v_{DD}$$

$$i_{out} = g_m v_{GS} \approx \frac{v_{DD}}{r_o}$$

対策: 出力抵抗を大きくして 電源電圧変動の影響を

抑制する

<mark>差動アンプ</mark>

低周波

$$i_{out} \approx \left(\frac{1}{r_{o1}} + \frac{1}{r_{o4}}\right) v_{DD}$$

対策: 出力抵抗を大きくして 電源電圧変動の影響を 抑制する

$$i_{out} \approx j\omega (C_{dsub4} + C_{dsub1}) v_{DD}$$

対策: ドレイン容量を小さくして 電源電圧変動の影響を 抑制する

出力段を接続すると

電流バッファを挿入

高周波領域では....

$$sC_C v_{out} = sC_{dsub} v_{DD}$$
$$v_{out} = \frac{C_{dsub}}{C_C} v_{DD}$$

 C_C 位相補償用キャパシタ

全差動構成だと....

Ⅲ.高速アナログ集積回路のレイアウト

- 1. 磁場結合による雑音
- 2. 基板抵抗結合による雑音

電磁誘導とは

-W-

 $V_2 = -M_{21} \frac{dI_1}{dt}$ 相互インダクタンス

電磁誘導(L)による雑音

磁場

直線配線でも発生する

電流を流すと....配線の周囲に磁場を撒き散らす

逆方向電流によるインダクタンスの低減効果

逆方向電流によるインダクタンス □-٫↓↓/--

逆方向電流: 周囲に磁場を撒き散らさない

電磁誘導を抑えるには

電磁誘導を軽減

基板抵抗結合による雑音

$\rho(\Omega cm)$	$f_t(GHz)$
10-2	15000
10º	150
10 ²	1.5

 f_t 以下の周波数では シリコン基板: \rightarrow 抵抗体

-WW-

基板(経由)雑音について

雑音経路の遮断方法

ガードリングの配置

n-ウエル

-WW-

