IEEE-SSCS Kansai Chapter Technical Seminar 2003.6.19

セルベース設計環境を利用した 最適設計技術

京都大学大学院情報学研究科 通信情報システム専攻 小野寺秀俊 セルベース設計環境を利用した 最適設計技術

- セルベース設計における設計最適化
 - ライブラリ構成法
 - ■タイミング解析技術
 - 設計フロー
- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 - データパス設計

- セルベース設計における設計最適化
 - ライブラリ構成法
 - -- 実験的検討 --
 - ■タイミング解析技術
 - 設計フロー
- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 - データパス設計

	セ	い論	理の種類		
Ī	(1)	NAND2,	NOR2	(10)	XOR3, XNOR3
	(2)	AND2,	0R2	(11)	A0222, 0A222~
	(3)	XOR2,	XNOR2		A044, 0A44
	(4)	A0121,	0A121	(12)	Inverted Input
		A0122,	0A122		A0121, 22
	(5)	A021,	0A21		OAI21, 22
		A021,	0A22		NAND2~4
	(6)	NAND3,	NOR3		NOR2~4
	(7)	AND3,	OR3	(13)	NAND5, 6, 8
	(8)	A01211,	0AI211		NOR5, 6, 8
		A0211,	0A211	4 4 A	
	(9)	NAND4,	NOR4	集台	での か か の ど の ど の ど の ど の ど の ど の ど の ど の ど の ど の ら の ど の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の の の の の の の の の の の の の
		AND4,	0R4	LIDI	ary Lever 247 Sto

馬	「動能力の構成
(1) (2) (3) (4) (5) (6) (7) (8)	x1 x1, x2, (x4) x1, x2, x4, (x8) x1, x2, x4, x8, (x16) x1, x2, x4, x8, x16, (x32) x1, x1. 5, x2, x3, x4, x8, x16, (x32) x1, x1. 5, x2, x3, x4, x6, x8, x12, x16 (x24, x32) x0, 65, x1, x1. 5, x2, x3, x4, x6, x8, x12, x16, (x24, x32)

15-20%の消費電力削減効果

- セルベース設計における設計最適化
 - ライブラリ構成法
 - タイミング解析技術 Static Timing Analysis
 - 設計フロー
- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 - データパス設計

タイミング解析技術(STA)

- 遅延テーブル作成時の検討課題
 - テーブル分割の最適化
 - •入力波形の選択 ---波形の多様性による誤差
- STA実施時の検討課題
 - 信号波形歪みへの対応 ---等価入力波形の 伝播
- Statistical STA
 - ゲート遅延の局所的なばらつきへの対応

入力波形近似の比較

波形の多様さによる遅延時間の不確かさ

歪んだ波形をどのように扱うか

■ 隣接配線2本の場合の入出力波形

信号到着時刻

信号到着時刻

最終到着時刻分布を正規分布で近似

Statistical Static Timing Analysis 静的統計遅延解析

素子遅延(ゲート,配線) 信号の最終到着時刻(LAT)

解析例 各ゲートの遅延が、σ=20% でばらつくとした

Skew corner(各ゲートの遅延を 3 の値で定義)解析は悲観的すぎる

Over Design

正しい 3σの遅延値が必要

Statistical STA

- 素子毎のランダムなばらつきや、設計量 (遅延など)の不確かさの影響を統計的に 取り扱う
- ばらつきにより各信号の最終到着時刻が 分布を持つ(正規分布に近似)
- この分布を、入力から出力に伝播させ、出力信号最終到着時刻の分布を求める
- 通常のSTAと同様の処理

- ライブラリ構成法
- タイミング解析技術
- 設計フロー

実験的検討

- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 - データパス設計

性能最適化設計フロー

32-bit RISCコア設計実験

- 設計回路
 32-bit CPU 回路規模 9kセル、面積の約40%がFF
- 設計仕様 100MHz, 120MHz, 130MHz
- 設計に用いるライブラリ
 - オンデマンドライブラリ セル高さ(基本Tr.サイズ)可変
 - 固定ライブラリ 基本Tr.サイズ W=4.45µm

セルベース設計環境を利用した 最適設計技術

- セルベース設計における設計最適化
 - ライブラリ構成法
 - ■タイミング解析技術
 - 設計フロー
- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 - データパス設計

遅延を増加させずに平均66%の消費電力削減

- ライブラリのオンデマンド生成と、ポストレ イアウトにおけるトランジスタ寸法調整
 - 消費電力最適化
 - 最大77%、平均66%の電力削減(実験結果)
 - 電源配線のピーク電流量も大幅削減(信頼性向上)
 - クロストークノイズ最適化
 - ピークノイズを50%削減(実験結果)

- セルベース設計における設計最適化
 - ライブラリ構成法
 - ■タイミング解析技術
 - 設計フロー
- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 - データパス設計

- 信号が規則的に伝搬するレイアウト設計
- セル内部のトランジスタサイズの調整、最適化

- 信号が規則的に伝搬するように外部端子とセル を手動配置、配線はCADを用いて自動配線
- 外部端子のみ手動配置し、セル配置と配線は CADを用いて自動
- 外部端子とセルの配置、配線の全てをCADを用いて自動

この3つの方法でレイアウト設計し、回路性能を比較

- 0.35 µ mプロセスで設計
 - 8ビット、32ビットの桁上げ選択加算回路
 - 4-2加算木を用いた16ビットのツリー型乗算回路
- 設計手法に関わらず回路面積は全て一定とした
 - 8ビット加算回路 75×101 [μm²]
 - 32ビット加算回路 84×403 [μm²]
 - 16ビット乗算回路 515×378 [μm²]

折り曲げを行った4-2加算木を用いた16ビット乗算回路

検討内容

- 信号が規則的に伝搬するレイアウト設計
- セル内部のトランジスタサイズの調整、最適化

- セルベース設計におけるゲート幅サイジングは 以下の手法を想定
 - H. Onodera, M. Hashimoto and T. Hashimoto, "ASIC Design Methodology with On-Demand Library Generation," Proc. Symposium on VLSI Circuits, 2001.
- 回路性能最適化問題はトランジスタのゲート幅を 変数とする非線形最適化問題
- 回路を構成するセルの全トランジスタを対象
- 簡単のために、同じ論理のセルのトランジスタは 全て共通させて変動させる

- セルベース設計環境を用いて高性能データパス 設計する手法について検討
- セル配置が回路性能を与える影響は小さい
- トランジスタレベルの最適化がフルカスタム設計
 同様に重要である
 - 遅延時間 最大20%、平均15%削減
 - 消費電力 最大58%、平均43%削減

セルベース設計環境を利用した 最適設計技術

- セルベース設計における設計最適化
 - ライブラリ構成法
 - 論理の種類は少なくてよい。駆動力は多数用意する。
 - タイミング解析技術
 - キャラクタライズに注意(テーブル分割、入力波形)
 - ■等価入力波形、Statistical STA
- セルベース設計環境を利用した最適設計
 - オンデマンドライブラリを用いた最適設計
 トランジスタ寸法の調節による消費電力・ノイズの最適化
 - データパス設計
 - 自動配置配線の活用
 - トランジスタ寸法の最適化