Design and Other ITRS Technologies: Sharing Brick Walls

IEEE SSCS Kansai Chapter October 17, 2001

Andrew B. Kahng, UCSD CSE & ECE Departments email: abk@ucsd.edu URL: http://vlsicad.ucsd.edu

Andrew Kahng - October 2001

MESSAGE 0.

• Apologies:

- My slides have too many words
- My intention was to talk about only parts of the slides, and leave the rest for reading later
- I am from the Electronic Design Automation (EDA) field, not Solid-State Circuits
- This talk: how semiconductor Design technology and Manufacturing technology must work with each other
- The context for this talk is the Roadmap (ITRS)
- Design brings together all other technologies
- If I go too fast, or speak too fast, please tell me
- Please ask your questions

Outline

- 1. Background: ITRS and system drivers
- 2. Design productivity gap
- 3. Vicious cycle \rightarrow virtuous cycle?
- 4. Sharing red bricks
- 5. Design-manufacturing handoff
- 6. Variability and value
- 7. Conclusion

MESSAGE 1.

- ITRS = International International Technology Roadmap for Semiconductors (http://public.itrs.net)
- ITRS is like a car
- Before, two drivers (husband = MPU, wife = DRAM)
- But, the drivers looked mostly in the rear-view mirror, they did not touch the steering wheel, and they left the car on cruise control (destination = "Moore's Law")
- Problem: many passengers in the car (ASIC, SOC, Analog, Mobile, Low-Power, Networking/Wireless, ...) wanted to go different places
- This year:
 - Some passengers became drivers!
 - All drivers must explain more clearly where they are going

Background: ITRS Acceleration and System Drivers

(ITRS = International Technology Roadmap for Semiconductors, http://public.itrs.net)

Andrew Kahng - October 2001

Roadmap Changes Since 2000

- Next "node" = 0.7x half-pitch or minimum feature size
 - \rightarrow 2x transistors on the same size die
- 90nm node in 2004 (100nm in 2003)
 - 90nm node \rightarrow physical gate length = 45nm
- MPU/ASIC half-pitch = DRAM half-pitch in 2004
 - Previous ITRS (2000): convergence in 2015
- Psychology: everyone must beat the Roadmap
 - Reasons: density, cost reduction, competitive position
 - TSMC CL010G logic/mixed-signal SOC process: risk production in 4Q02 with multi-Vt, multi-oxide, embedded DRAM and flash, low standby power derivatives, …

System Drivers

- New Chapter in 2001 ITRS
- IC products that drive manufacturing and design technologies
- Overall Roadmap Technology Characteristics + System Drivers
 = "consistent framework for technology requirements"
- Four system drivers
 - MPU = traditional microprocessor core (large design team, digital CMOS)
 - SOC = three types = three different drivers
 - multi-technology (heterogeneous integration, e.g., analog/mixed-signal)
 - high-performance (high-speed I/O / clock frequencies, e.g., networks)
 - low-cost/low-power (productivity, power)
 - AM/S = four basic circuits (LNA, VCO, PA, ADC) + figures of merit
 - DRAM

MPU Driver

- Two MPU flavors
 - Cost-performance: constant 140 mm² die, "desktop"
 - High-performance: constant 310 mm² die, "server"
 - (Next ITRS: merged desktop-server, mobile flavors)
 - MPU organization: multiple cores, on-board L3 cache
 - More dedicated, less general-purpose logic
 - More cores help power management (lower frequency, lower Vdd, more parallelism → overall power savings)
 - Reuse of cores helps design productivity
 - Redundancy helps yield and fault-tolerance
 - MPU and SOC converge (organization and design methodology)
- Double transistor count each node, not each 18 months
 "Moore's Law" may slow down
- No more doubling of clock frequency at each node

Diminishing Returns: Pollack's Rule

- Area of "lead" processor is 2-3X area of "shrink" of previous generation processor
- Performance is only 1.5X better
- "On the wrong side of a square law"

FO4 INV Delays Per Clock Period

- FO4 INV = inverter driving 4 identical inverters (no interconnect)
- Half of frequency improvement came from reducing logic stages
- Other extra performance came from slower Vdd scaling, but this costs too much power

MPU Supporting Analyses

- Diminishing returns
 - "Pollack's Rule": In a given node, new microarchitecture takes 2-3x area of previous generation one, but provides only 50% more performance
 - "Logarithmic Law of Usefulness", "Law of Observed Functionality": transistor count grows exponentially, system value (utility) grows linearly
- Power knob running out
 - Speed from Power: scale voltage by 0.85x instead of 0.7x per node
 - Large switching currents, large power surges on wakeup, IR drop issues
 - Limited by Assembly and Packaging roadmap (bump pitch, package cost)
 - Limited by cost (e.g., system cost increases by \$1 per watt)
 - Power management: 2500% improvement needed by 2016
- Speed knob running out
 - 2x frequency per node: 1.4x from scaling, 1.4x from fewer logic stages
 - But: clocks cannot be generated with period < 6-8 FO4 INV delays
 - Pipelining overhead (1-1.5 FO4 INV delay for pulse-mode latch, 2-3 for FF)
 - 14 16 FO4 INV delays limit for clock period in core (L1 cache, 64b add)
 - Cannot continue 2x frequency per node trend

SOC-LP (PDA) Driver - STRJ-WG1

Year of Product	2001	2004	2007	2010	2013	2016
Process Technology (nm)	130	90	65	45	32	22
Operation Voltage (V)	1.2	1	0.8	0.6	0.5	0.4
Clock Frequency (MHz)	150	300	450	600	900	1200
Application	Still Image Processing	Real Time Vide	Real Time Video Codec Real Time Interpretation			
(MAX performance required)		(MPEG4/CIF)				
Application	Web Browser	TV Telephone	(1:1)	TV Telephone (>3:1)		
(Others)	Electric Mailer	Voice Recogni	tion (Input)	Voice Recognition (Operation)		
	Scheduler	Authentication	(Crypto Engine)			
Processing Perf (GOPS)	0.3	2	15	103	720	5042
Average Power (W) (req'd)	0.1	0.1	0.1	0.1	0.1	0.1
Standby power (mW) (req'd)	2.1	2.1	2.1	2.1	2.1	2.1

- Driver for power management and low-power device roadmap
- Driver for design productivity and core-based design
 - GOPS / Frequency = Processing Logic: increase 4X per node

SOC-LP (Low-Power PDA) Driver

Power management challenge

- Reduce dynamic and static power to avoid "zero logic content"
- Necessary tool: low-power process (\rightarrow PIDS low-power device roadmap)
- Slower, less leaky devices: Lgate lags high-performance by 2 years; higher Vth, Vdd, Tox, tau (CV/I) – see next slide
- Low Operating Power (LOP) and Low Standby Power flavors → design tools handle multi (Vt,Tox,Vdd) (= "<u>unscaled</u> devices" – for analog also)
- Design productivity challenge
 - Processing logic increases 4x per node; die size increases 20% per node

Year	2001	2004	2007	2010	2013	2016
¹ ⁄ ₂ Pitch	130	90	65	45	32	22
Logic Mtx per designer-year	1.2	2.6	5.9	13.5	37.4	117.3
Dynamic power reduction (X)	0	1.5	2.5	4	7	20
Standby power reduction (X)	2	6	15	39	150	800

Andrew Kahng – October 2001

LP Device Roadmap

Parameter	Туре	99	00	01	02	03	04	05	06	07	10	13	16
Tox (nm)	MPU	3.00	2.30	2.20	2.20	2.00	1.80	1.70	1.70	1.30	1.10	1.00	0.90
	LOP	3.20	3.00	2.2	2.0	1.8	1.6	1.4	1.3	1.2	1.0	0.9	0.8
	LSTP	3.20	3.00	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.1	1.0	0.9
Vdd	MPU	1.5	1.3	1.2	1.1	1.0	1.0	0.9	0.9	0.7	0.6	0.5	0.4
	LOP	1.3	1.2	1.2	1.2	1.1	1.1	1.0	1.0	0.9	0.8	0.7	0.6
	LSTP	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.0	0.9	0.9
Vth (V)	MPU	0.21	0.19	0.19	0.15	0.13	0.12	0.09	0.06	0.05	0.021	0.003	0.003
	LOP	0.34	0.34	0.34	0.35	0.36	0.32	0.33	0.34	0.29	0.29	0.25	0.22
	LSTP	0.51	0.51	0.51	0.52	0.53	0.53	0.54	0.55	0.52	0.49	0.45	0.45
lon (uA/um)	MPU	1041	1022	926	959	967	954	924	960	1091	1250	1492	1507
	LOP	636	591	600	600	600	600	600	600	700	700	800	900
	LSTP	300	300	300	300	400	400	400	400	500	500	600	800
CV/I (ps)	MPU	2.00	1.64	1.63	1.34	1.16	0.99	0.86	0.79	0.66	0.39	0.23	0.16
	LOP	3.50	2.87	2.55	2.45	2.02	1.84	1.58	1.41	1.14	0.85	0.56	0.35
	LSTP	4.21	3.46	4.61	4.41	2.96	2.68	2.51	2.32	1.81	1.43	0.91	0.57
loff (uA/um)	MPU	0.00	0.01	0.01	0.03	0.07	0.10	0.30	0.70	1.00	3	7	10
	LOP	1e-4	1e-4	1e-4	1e-4	1e-4	3e-4	3e-4	3e-4	7e-4	1e-3	3e-3	1e-2
	LSTP	1e-6	1e-6	1e-6	1e-6	1e-6	1e-6	1-6	1e-6	1-6	3e-6	7e-6	1e-5
Gate L (nm)	MPU	100	70	65	53	45	37	32	30	25	18	13	9
	L(*)P	110	100	90	80	65	53	45	37	32	22	16	11

Outline

- 1. Background: ITRS and system drivers
- 2. Design productivity gap
- 3. Vicious cycle \rightarrow virtuous cycle?
- 4. Sharing red bricks
- 5. Design-manufacturing handoff
- 6. Variability and value
- 7. Conclusion

MESSAGE 2.

- "Design Productivity Gap" = "failure of Design Technology"
- Number of available transistors grows faster than designer ability to design them well
 - → Increased design effort, risk, turnaround time (TAT)
 → fewer designs are worth trying
- Manufacturing non-recurring engineering (NRE) cost also increasing (mask set)
 - \rightarrow fewer designs are worth trying
- "Workarounds" sacrifice quality, value of designs
 - \rightarrow even with workarounds, fewer designs worth trying
- This is a semiconductor industry problem, not an EDA problem

Productivity Gap (1994)

				3 Yr. Design		
Year	<u>Technology</u>	Chip Complexity	Frequency	<u>Staff</u>	Staff Cost*	
1997	250 nm	13 M Tr.	400 MHz	210	90 M	
1998	250 nm	20 M Tr.	500	270	120 M	
1999	180 nm	32 M Tr.	600	360	160 M	
2002	130 nm	130 M Tr.	800	800	360 M	

* @ \$ 150 k / Staff Yr. (In 1997 Dollars)

Logic Transistor per Chip

Source: SEMATECH

Andrew Kahng - October 2001

Mask NRE Cost (1999)

"\$1M (= 10⁸ Yen) mask set" in 100nm, but average only 500 wafers per set Andrew Kahng - October 2001

The Implementation Gap

Andrew Kahng – October 2001

Closing the Implementation Gap: How?

source: MARCO GSRC Andrew Kahng – October 2001

Low-Value Designs?

Percent of die area that must be occupied by memory to maintain SOC design productivity (STRJ-WG1 scenario published in ITRS-2000 update)

An all-memory design is probably a low-value design

Andrew Kahng – October 2001

Reduced Back-End Effort ?

V S G S V S

Example: regular shielded wiring fabric pattern at minimum pitch

- Eliminates signal integrity, delay uncertainty concerns
- But has at least 60% 80% density cost

Improved Reuse Productivity ?

source: MARCO GSRC Andrew Kahng – October 2001

But: Quality Trades Off With Flexibility

Source: Prof. Jan Rabaey, UC Berkeley

Andrew Kahng – October 2001

"What If Design Technology Fails?"

- Role of Design Technology: "Fill the fab"
 - keep manufacturing facilities fully utilized with high-volume parts, high-value (= high-margin) parts
- "When design technology fails"
 - not enough high-value designs
 - semiconductor industry looks for a "workaround"
 - reconfigurable logic
 - platform-based design
 - extract value somewhere other than silicon differentiation
- What about:
 - Electronics industry looks for a "workaround" ?
 - extract value somewhere other than silicon ?

Design and Manufacturing In Same Boat

- Design productivity gap
 - Threatens design <u>quality</u>
 - This is really a design technology productivity gap
- Design starts, ASIC business models at risk
 - More reprogrammable, platform-based "workarounds"
 - More software workarounds
 - \rightarrow Why retool?

2001 ITRS : "Cost of design is the greatest threat to continuation of the semiconductor roadmap."

Outline

- 1. Background: ITRS and system drivers
- 2. Design productivity gap
- 3. Vicious cycle \rightarrow virtuous cycle?
- 4. Sharing red bricks
- 5. Design-manufacturing handoff
- 6. Variability and value
- 7. Conclusion

MESSAGE 3.

- Fact 1. Design is the bottleneck
- Fact 2. Investment in Design Technology is low
 - We may think "things are okay"
 - However, there are many crises in 2001
- Why this contradiction?
- How can we prove that Design Technology merits investment?

Mystery

- Fact 1. Design technology is a bottleneck for the semiconductor industry.
- Fact 2. Investment in process technology is much greater than investment in design technology.

Good News: Progress in design technology continues

Design Cost of SOC-LP PDA Driver

SOC Design Cost Model

Andrew Kahng - October 2001

Design Cost Model (ITRS-2001)

- Engineer cost per year increases 5% per year (\$181,568 in 1990)
- EDA tool cost per year (per engineer) increases 3.9% per year (\$99,301 in 1990) (+ separate term for interoperability)
- Productivity due to 8 major Design Technology innovations (3.5 of which are still unavailable) : RTL methodology; In-house P&R; Tall-thin engineer; Small-block reuse; Large-block reuse; IC implementation suite; Intelligent testbench; Electronic Systemlevel methodology
- Matched up against SOC-LP PDA content:
 - SOC-LP PDA design cost = \$15M (= 1.5B Yen) in 2001
 - Would have been \$342M without EDA innovations and the resulting improvements in design productivity

Mystery

- Fact 1. Design technology is a bottleneck for the semiconductor industry.
- Fact 2. Investment in process technology is much greater than investment in design technology.

Bad News: In 2001, many design technology gaps have become crises

Design Technology Crises, 2001

- 2-3X more verification engineers than designers on microprocessor teams
- Software = 80% of system development cost (and Analog design hasn't scaled)
- Design NRE > 10's of \$M (B's of Yen) $\leftarrow \rightarrow$ manufacturing NRE \$1M (100M Y)
- Design TAT = months or years $\leftarrow \rightarrow$ manufacturing TAT = weeks
- Test cost per transistor grows exponentially relative to mfg cost

Andrew Kahng - October 2001

Mystery

- Fact 1. Design technology is a bottleneck for the semiconductor industry.
- Fact 2. Investment in process technology is much greater than investment in design technology.

• Why this contradiction?

Hold These Thoughts...

- ITRS is created by worldwide semi/system houses
 EDA's star customers
- EDA in the big picture
 - Has one chapter out of 12 in ITRS
 - Is just one part of SISA (semiconductor industry supplier association
 - Is small: 6000 R&D worldwide, \$4B (400B Yen) total market
- EDA growth
 - Dataquest: 3.9% annual growth in tools \$ spent per designer
 - integration costs > tool costs
- Hold these thoughts:
 - "A small industry with poor perceived ROI will stay small" is a "vicious cycle"
 - How do we turn a vicious cycle into a "virtuous cycle"?

Andrew Kahng – October 2001

How to Achieve the Virtuous Cycle?

- Passive / Negative Approach (NO !!!)
 - (senior manager at major EDA company, IEEE CANDE Workshop, 9/2001): "Rising NRE will force semiconductor manufacturers to produce primarily high-volume, general purpose components such as memory, FPGAs, and standard processors. New EDA tools will then have an impact on only a smaller fraction of the semiconductor industry, and research funding will evaporate, leaving only the service and support functions, which don't need to be centralized. Prediction: EDA industry is reduced to a service role as semiconductor design starts decline."
 - ICCAD, DAC, etc. panels: "Why doesn't EDA get any respect?"
- Active / Positive Approach (YES !!!)
 - Understand cost and value of Design Technology
 - Prove EDA ROI

Outline

- 1. Background: ITRS and system drivers
- 2. Design productivity gap
- 3. Vicious cycle \rightarrow virtuous cycle?
- 4. Sharing red bricks
- 5. Design-manufacturing handoff
- 6. Variability and value
- 7. Conclusion

MESSAGE 4.

- ITRS technologies are like parts of the car
- Every one takes the "engine" point of view when it defines its requirements
- All parts must work together to make the car go smoothly
- But: "The Squeaky Wheel Gets The Grease"
 (Design Technology has never squeaked loudly...)
- Need "global optimization" of requirements

What Is A "Red Brick" ?

 Red Brick = ITRS Technology Requirement with no known solution

 Alternate definition: Red Brick = something that REQUIRES billions of dollars (\$1B = 10¹¹ Yen) in R&D investment

 Observation: Design Technology "is different", and has never stated any meaningful red bricks in the ITRS

Example (Preliminary, NOT Published)

Table 👷 High Frequency Serial Communications Test Requirements-Near Term

Year of Production	2001	2002	2003	2004	2005	2006	2007	Driver
DRAM ½ Pitch (Sc. 2.0)	130	115	100	90	80	70	65	
MPU 1/2 Pitch (Sc. 3.7)	150	130	105	90	80	70	65	
MPU Printed Gate Length (Sc.	90	75	65	53	45	40	35	
3.7)								
MPU Physical Gate Length (Sc.	65	53	45	37	32	30	25	
3.7)								
High-performance-level serial transceivers								
Serial data rate (Gbits/s)	10	10	40	40	40	40	40	
Maximum Reference Clock Speed (MHz)	667	667	2500	2500	2500	2500	2500	
High-integration-level backplane and computer VC	7							
Serial data rate (Gbits/s)	2.5	3.125	3.125	10	10	40	40	
			10		40			
Port count	20	100	200	100	200	100	200	
			20		20			
Maximum Reference Clock Speed (MHz)	166	166	166	667	667	2500	2500	*
			667		2500			
White—Manufacturable Solutions Exist, and Are Be	ing Optimiz	ed						
YellowManufacturable Solutions are Known								
Red–Manufacturable Solutions are NOT Known								

2001 Big Picture = Big Opportunity

- Why ITRS has "red brick" problems
 - "Wrong" Moore's Law
 - Frequency and bits are not the same as efficiency and utility
 - No awareness of <u>applications</u> or <u>architectures</u> (only Design is aware)
 - Independent, "linear" technological advances don't work
 - Car has more drivers (mixed-signal, mobile, etc. <u>applications</u>)
 - Every car part thinks that it is the engine \rightarrow too many red bricks
 - No clear ground rules
 - Is cost a consideration? Is the Roadmap only for planar CMOS?

• New in 2001: Everyone asks "Can Design help us?"

- Process Integration, Devices & Structures (PIDS): 17%/year improvement in CV/I metric → sacrifice loff, Rds, …analog, LOP, LSTP, … many flavors
- Assembly and Packaging: cost limits → keep bump pitches high → sacrifice IR drop, signal integrity (impacts Test as well)
- Interconnect, Lithography, PIDS/Front-End Processes: What variability can Designers tolerate? 10%? 15%? 25%?

"Design-Manufacturing Integration"

- 2001 ITRS Design Chapter: "Manufacturing Integration" = one of five Cross-Cutting Challenges
- Goal: <u>share</u> red bricks with other ITRS technologies
 - Lithography CD variability requirement → new Design techniques that can better handle variability
 - Mask data volume requirement → solved by Design-Mfg interfaces and flows that pass functional requirements, verification knowledge to mask writing and inspection
 - ATE cost and speed red bricks → solved by DFT, BIST/BOST techniques for high-speed I/O, signal integrity, analog/MS
 - Does "X initiative" have as much impact as copper?

Example Red Brick: Dielectric Permittivity

YEAR	2001	2002	2003	2004	2005	2006	2007
Technology Node							
DRAM ¹ / ₂ PITCH (nm) (Sc. 2.0)	130	115	100	90	80	70	65
MPU/ASIC ¹ / ₂ PITCH (nm) (Sc. 3.7)	150	130	107	90	80	70	65
MPU PRINTED GATE LENGTH (nm) (Sc. 3.7)	90	75	65	53	45	40	35
MPU PHYSICAL GATE LENGTH (nm) (Sc. 3.7)	65	53	45	37	32	28	25
Conductor effective resistivity	2.2	2.2	2.2	2.2	2.2	2.2	2.2
(μΩ-cm) Cu intermediate wiring*							
Barrier/cladding thickness	18	15	13	11	10	9	8
(for Cu intermediate wiring) (nm)							
Interlevel metal insulator	3.0-3.7	3.0-3.7	2.9-3.5	2.5-3.0	2.5-3.0	2.5-3.0	2.0-2.5
-effective dielectric constant (κ)							
Interlevel metal insulator (minimum	2.7	2.7	2.7	2.2	2.2	2.2	1.7
expected)							
—bulk dielectric constant (κ)							

Bulk and effective dielectric constants

Porous low-k requires alternative planarization solutions Cu at all nodes - conformal barriers

C. Case, BOC Edwards – ITRS-2001 preliminary

Will Copper Continue To Be Worth It?

C. Case, BOC Edwards – ITRS-2001 preliminary

Cost of Manufacturing Test

Is this better solved with Automated Test Equipment technology, or with Design (for Test, Built-In Self-Test) ? Is this even solvable with ATE technology alone?

PIDS (Devices/Structures)

- CV/I trend (17% per year improvement) = "constraint"
- Huge increase in subthreshold I_{off}
 - Room temperature: increases from 0.01 uA/um in 2001 to 10 uA/um at end of ITRS (22nm node)
 - At operating temperatures (100 125 deg C), increase by 15 40x
 - Standby power challenge
 - Manage multi- V_t , multi- V_{dd} , multi-Tox in same core
 - Aggressive substrate biasing
 - Constant-throughput power minimization
 - Modeling and controls passed to operating system and applications
- Aggressive reduction of Tox
 - Physical Tox thickness < 1.4nm (down to 1.0nm) starting in 2001, even if high-k gate dielectrics arrive in 2004
 - Variability challenge: "10%" < one atomic monolayer</p>

Assembly and Packaging

- Goal: cost control (\$0.07/pin, \$2 package, ...)
- "Grand Challenge" for A&P: work with Design to develop die-package co-analysis, co-optimization tools
- Bump/pad counts scale with chip area only
 - Effective bump pitch roughly constant at 300um
 - MPU pad counts flat from 2001-2005, but chip current draw increases 64%
- IR drop control challenge
 - Metal requirements explode with I_{chip} and wiring resistance

• Power challenge

- 50 W/cm² limit for forced-air cooling; MPU area becomes flat because power budget is flat
- More control (e.g., dynamic frequency and supply scaling) given to OS and application
- Long-term: Peltier-type thermoelectric cooling, $\dots \rightarrow$ design must know

Manufacturing Test

- High-speed interfaces (networking, memory I/O)
 - Frequencies on same scale as overall tester timing accuracy
- Heterogeneous SOC design
 - Test reuse
 - Integration of distinct test technologies within single device
 - Analog/mixed-signal test
- Reliability screens failing
 - Burn-in screening not practical with lower Vdd, higher power budgets → overkill impact on yield
- Design challenges: DFT, BIST
 - Analog/mixed-signal
 - Signal integrity and advanced fault models
 - BIST for single-event upsets (in logic as well as memory)
 - Reliability-related fault tolerance

Lithography

- 10% CD uniformity is a red brick today
- 10% < 1 atomic monolayer at end of ITRS
- This year: Lithography, PIDS, FEP agreed to raise CD uniformity requirement to 15% (but still a red brick)
- Design for variability
 - Novel circuit topologies
 - Circuit optimization (conflict between slack minimization and guardbanding of quadratically increasing delay sensitivity)
 - Centering and design for \$/wafer
- Design for when devices, interconnects no longer 100% guaranteed correct?
 - Potentially huge savings in manufacturing, verification, test costs

How to Share Red Bricks

- Cost is the biggest missing link within the ITRS
 - Manufacturing cost (silicon cost per transistor)
 - Manufacturing NRE cost (mask, probe card, ...)
 - Design NRE cost (engineers, tools, integration, ...)
 - Test cost
 - Technology development cost → who should solve a given red brick wall?
- Return On Investment (ROI) = Value / Cost

- Value needs to be defined ("design quality", "time-to-market")

 Understanding cost and ROI allows sensible sharing of red bricks across industries

Outline

- 1. Background: ITRS and system drivers
- 2. Design productivity gap
- 3. Vicious cycle \rightarrow virtuous cycle?
- 4. Sharing red bricks
- 5. Design-manufacturing handoff
- 6. Variability and value
- 7. Conclusion

MESSAGE 5.

- Manufacturing handoff (to mask flow) is complicated and expensive because of "reticle enhancement techniques" (RET)
- RET examples: Optical Proximity Correction (OPC), Phase-Shifting Masks (PSM)
- To reduce mask complexity, write time, and verification time (= mask NRE cost), we need smarter handoff from design to manufacturing
- Other manufacturing interfaces (process models, libraries, etc.) are also critical, but not discussed

Subwavelength Optical Lithography

- WYSIWYG (layout = mask = wafer) failed starting with 350nm generation
- Optical lithography: feature size limited by diffraction
- Available knobs
 - aperture: OPC
 - phase: PSM

Optical Proximity Correction (OPC)

- Aperture changes to improve process control
 - improve yield (process window)
 - improve device performance

OPC Terminology

Phase Shifting Masks (PSM)

Many Other Optical Litho Issues

• Example: Field-dependent aberrations cause placement errors and distortions

 $\operatorname{CELL}_A(X_1, Y_1) \neq \operatorname{CELL}_A(X_0, Y_0) \neq \operatorname{CELL}_A(X_2, Y_2)$

R. Pack, Cadence Andrew Kahng – October 2001

RET Roadmap

Optical Lithography Becomes Harder

- Process window and yield enhancement
 - Forbidden width-spacing combinations (defocus window sensitivities)
 - Complex "local DRCs"
- Lithography equipment choices (e.g., off-axis illumination)
 - Forbidden configurations (wrong-way critical-width doglegs, or diagonal features)
- OPC subresolution assist features (scattering bars)
 Notch rules, critical-feature rules on local metal

Context-Dependent Fracturing

Same pattern, different fracture

P. Buck, Dupont Photomasks – ISMT Mask-EDA Workshop July 2001

ITRS Maximum Single Layer File Size

P. Buck, Dupont Photomasks – ISMT Mask-EDA Workshop July 2001

ALTA-3500 Mask Write Time

Out-of-Control Mask Flow

P. Buck, Dupont Photomasks – ISMT Mask-EDA Workshop July 2001

Mask Data and \$1M (= 10⁸ Yen) Mask NRE

- Too many data formats
 - Most tools have unique data format
 - Raster to variable shaped-beam conversion is inefficient
 - Real-time manufacturing tool switch, multiple qualified tools
 → <u>duplicate fractures</u> to avoid delays if tool switch required
- Data volume
 - OPC increases figure count acceleration
 - MEBES format is flat
 - ALTA machines (mask writers) slow down with > 1GB data
 - Data volume strains distributed manufacturing resources
- Refracturing mask data
 - Before: mask industry never touched mask data (risky, no good reason)
 - Today: 90% of mask data files manipulated or refractured: process bias sizing (iso-dense, loading effects, linearity, ...), mask write optimization, multiple tool formats, ...

Shared Red Bricks for Mask Handoff

- WYSIWYG broken → (mask) verification bottleneck
- Need function- and cost-aware OPC, PSM, dummy fill
 - Real goal = predictable circuit performance and function
 - Therefore, tools must understand functional intent
 - make only corrections that gain \$\$\$, reduce performance variation
 - make only corrections that can be manufactured and verified (including mask inspection)
 - understand (data volume, verification) costs of breaking hierarchy
 - Understand flow issues
 - e.g., avoid making same corrections 3x (library, router, PV tool)
- Need much more than GDSII in manufacturing interface
 - Includes sensitivities to patterning variation / error
 - Guided by models of manufacturing equipment
 - Mask verification needs to know same function, sensitivity info
- Manufacturing NRE vital to mask, ASIC industries

Outline

- 1. Background: ITRS and system drivers
- 2. Design productivity gap
- 3. Vicious cycle \rightarrow virtuous cycle?
- 4. Sharing red bricks
- 5. Design-manufacturing handoff
- 6. Variability and value
- 7. Conclusion

MESSAGE 6.

- Design Technology must be able to measure its value
- One example measure of value is \$ per wafer
- To measure this, we need (1) detailed models of process variability, and (2) models of how chip parameters (frequency, testability, etc.) affect value

Process Variation Sources

- Design \rightarrow (manufacturing variability) \rightarrow Value
- Intrinsic variations
 - Systematic: due to predictable sources, can be compensated during design stage
 - *Random*: inherently unpredictable fluctuations and cannot be compensated
- Dynamic variations
 - Stem from circuit operation, including supply voltage and temperature fluctuations
 - Depend on circuit activity and hard to be compensated
- Correlations
 - -Tox and Vth0 are correlated due to

$$V_{th0} = V_{fb} + 2\varphi_B + \frac{|Q_{dep}|}{\varepsilon_{ox}} \cdot T_{ox}$$

Line width and spacing are anti-correlated by one;
 ILD and interconnect thickness also anti-correlated

Technology Trend Over Generations

Technology	180nm		130)nm	100nm		
Device	nmos	pmos	nmos	pmos	nmos	pmos	
Leff (µm)	0.10 ±15%	0.12 ± 15%	$0.09 \pm 15\%$	$0.09 \pm 15\%$	0.06 ± 15%	$0.06 \pm 15\%$	
Tox (nm)	$40 \pm 4\%$	$42 \pm 4\%$	33 ± 4%	$33 \pm 4\%$	25 ± 4%	25 ± 4%	
Vth0 (V)	$0.40 \pm 12.5\%$	$-0.42 \pm 12.5\%$	$0.27 \pm 15.5\%$	$-0.35 \pm 15.5\%$	$0.26 \pm 12.7\%$	$-0.30 \pm 12.7\%$	
Rdsw (Ω /)	250 ± 10%	$450 \pm 10\%$	200 ± 10%	$400 \pm 10\%$	180 ± 10%	300 ± 10%	
Interconnect	local	global	local	global	local	global	
3	$3.5 \pm 3\%$		3.2 =	± 5%	2.8 ± 5%		
w (µm)	0.28 ± 20%	$0.80 \pm 20\%$	$0.20 \pm 20\%$	$0.60 \pm 20\%$	0.15 ± 20%	0.50 ± 20%	
s (µm)	0.28 ± 20%	$0.80 \pm 20\%$	$0.20 \pm 20\%$	$0.60 \pm 20\%$	0.15 ± 20%	$0.50 \pm 20\%$	
t (µm)	0.45 ± 10%	1.25 ± 10%	0.45 ± 10%	1.20 ± 10%	0.50 ± 10%	$1.20 \pm 10\%$	
ILDh (µm)	0.65 ± 15%	1.80 ± 15%	0.45 ± 15%	1.60 ± 15%	0.30 ± 15%	1.20 ± 15%	
Rvia (Ω)	$46 \pm 20\%$		50 ±	20%	$54 \pm 20\%$		
Length (µm)	61.01	1061	45.19	1127	33.90	1247	
Wn/Ln (µm)	1.26/0.18	20/0.18	0.91/0.13	15/0.13	0.80/0.10	10/0.10	
Dynamic			•		•		
Temp (°C)	25-100		25/	100	25/100		
Vdd (V)	1.8 ± 10%		1.5 ±	= 10%	$1.2 \pm 10\%$		
Tr (ps)	160		9	95	60		

- Values are from ITRS, BPTM, and industry; red is 3σ
- From ongoing work at UCSD/UCB/Michigan; some values are wrong (e.g., Rvia)

Copper CMP Variability in Near Term

YEAR	2001	2002	2003	2004	2005	2006	2007
Technology Node							
DRAM 1/2 PITCH (nm) (SC. 2.0)	130	115	100	90	80	70	65
MPU/ASIC ½ PITCH (nm) (Sc. 3.7)	150	130	107	90	80	70	65
MPU PRINTED GATE LENGTH (nm) (Sc. 3.7)	90	75	65	53	45	40	35
MPU PHYSICAL GATE LENGTH (nm) (Sc. 3.7)	65	53	45	37	32	28	25
Cu thinning at minimum pitch due to erosion (nm), 10% X height, 50% areal density, 500 µm square array	28	24	20	18	16	14	13
Cu thinning at minimum intermediate pitch due to erosion (nm), 10% X height, 50% areal density, 500 µm square array	36	30	27	23	20	18	18
Cu thinning global wiring due to dishing and erosion (nm), 10% X height, 80% areal density, 15 micron wide wire	67	57	50	48	40	35	32
Cu thinning global wiring due to dishing (nm), 100 micron wide feature	40	34	30	29	24	21	19

Combined dishing/erosion metric for global wires

Cu thinning due to dishing for isolated lines/pads

No significant dishing at local levels - thinning due to erosion over large areas (50% areal coverage) C. Case, BOC Edwards – ITRS-2001 preliminary

Variation Sensitivities: Local Stage

- Sensitivity evaluated by the percentage change in performance when there is 3σ variation at the parameter
- For local stage, device variations have larger impact on line delay and interconnect variations have stronger impact on crosstalk noise

Andrew Kahng – October 2001

Mapping Design to Value (2)

AMD Processors

Goal: combine (1) and (2), drive Design optimizations

Conclusions

- ITRS-2001: Too many independent red bricks
- Design Technology must actively share red bricks from other technology areas
 - Many possibilities
- Design Technology community must measure itself
 - Value of designs, design tools, design processes
 - Design NRE cost: TAT/TTM, tools, integration, ...
 - Return On Investment = Value / Cost
- Virtuous cycle: DT gives better ROI, enables silicon-based product differentiation, achieves higher value

Thank you for your attention !

SPARE / HIDDEN SLIDES

Silicon Complexity Challenges

- Silicon Complexity = impact of process scaling, new materials, new device/interconnect architectures
- Non-ideal scaling (leakage, power management, circuit/device innovation, current delivery)
- Coupled high-frequency devices and interconnects (signal integrity analysis and management)
- Manufacturing variability (library characterization, analog and digital circuit performance, error-tolerant design, layout reusability, static performance verification methodology/tools)
- Scaling of global interconnect performance (communication, synchronization)
- Decreased reliability (SEU, gate insulator tunneling and breakdown, joule heating and electromigration)
- Complexity of manufacturing handoff (reticle enhancement and mask writing/inspection flow, manufacturing NRE cost)

System Complexity Challenges

- System Complexity = exponentially increasing transistor counts, with increased diversity (mixed-signal SOC, ...)
- Reuse (hierarchical design support, heterogeneous SOC integration, reuse of verification/test/IP)
- Verification and test (specification capture, design for verifiability, verification reuse, system-level and software verification, AMS self-test, noise-delay fault tests, test reuse)
- Cost-driven design optimization (manufacturing cost modeling and analysis, quality metrics, die-package co-optimization, ...)
- Embedded software design (platform-based system design methodologies, software verification/analysis, codesign w/HW)
- Reliable implementation platforms (predictable chip implementation onto multiple fabrics, higher-level handoff)
- Design process management (design team size and geographic distribution, data management, collaborative design support, systematic process improvement)

Cross-Cutting Design Challenges

- Productivity
- Power
- Manufacturing Integration
- Interference
- Error-Tolerance

What does EDA know about process?

Developmental Fab in Tight Loop

Density Control for CMP

- Chemical-mechanical planarization (CMP)
 - applied to interlayer dielectrics (ILD) and inlaid metals
 - polishing pad wear, slurry composition, pad elasticity make this a very difficult process step
- Cause of CMP variability
 - pad deforms over metal feature
 - greater ILD thickness over dense regions of layout
 - "dishing" in sparse regions of layout
 - huge part of chip variability budget used up (e.g., 4000Å ILD variation across-die)
- Relationship between layout density, ILD thickness
- Variation controlled by insertion of dummy features into layout

