マイクロホンアレイを用いた天井クレーンの振れ角計測器

An instrumentation for sway angle of overhead crane with microphone array

川本 早織 松永 美樹 中本 昌由

Saori Kawamoto, Miki Matsunaga, and Masayoshi Nakamoto

広島大学

1 はじめに

クレーンは工場,倉庫,建設工事場など,産業界の 様々な場所で広く使用されており,使用目的に応じて 様々な種類のものが存在する.本研究では,広く産業 界で利用されている「天井クレーン」と呼ばれる種類 のクレーンを考える.これは、「トロリ」と呼ばれる台 車にロープの端を固定し,反対の端のフックで荷を吊 り下げ,トロリが左右に移動することにより荷物を運 搬する仕組みになっている.

クレーンの運転の際には吊り荷の振れが発生するた め,作業の効率化や安全性向上を目的として,吊り荷 の振れ止めを行う必要がある.現状では吊り荷の振れ 止めは経験豊かなオペレータが熟練技術によって振れ 止めを行っている.しかし,熟練オペレータの育成に は多大な時間が必要であり,さらに少子高齢化時代を 迎えて熟練オペレータの不足は産業界において深刻な 問題になると予想されている.そのため,近年クレー ンの振れ止め制御に関する研究が非常に活発に行われ ている [1]-[5].

一般に,振れ止め制御には振れ角の推定が必要とされる.先行研究の多くは,研究室規模の実験装置においてエンコーダなどにより振れ角が推定できるているという前提で振れ止め制御を行っている.しかしながら,大型のクレーンにおいて振れ角を計測する技術は確立されておらず,振れ止め制御を実用化・商品化する上で最大の障害になっていると考えられている.

我々の研究グループは2本のマイクロホンを使用し, 音源から発生させた音波の到来時間差に基づいて振れ 角を検出する振れ角推定アルゴリズム(音響ソフトセ ンサ)を提案した[6].この方法は,フック(または吊 り荷)から音を発生させ,クレーンの上部に設置した 複数マイクロホンでその音を計測し,音の到来時間差 から振れ角を計測するというアプローチである.さら に,文献[7]において,振れ角の計算速度と推定精度 を向上させる方法を開発した.

本研究では、マイクロホン数を3本配置するマイク ロホンアレイを用いた新しい振れ角推定アルゴリズム を提案する、マイクロホン数が3本となったことによっ て、到来時間差が2つ以上得られる.この複数の到来 時間差を計算することによって、マイクロホンが2本 のときには既知である必要があったパラメータを未知 として振れ角を算出することが可能となる.具体的に は、吊り荷(音源)とトロリまでの距離(質点距離と いう) *l_w* が未知の場合,音速が未知の場合についても 振れ角が計測が可能となる. 質点距離は,クレーンの ロープにたわみがある場合(例えば吊り荷を巻き上げ る前の静止した状態)で未知となる.また,音速は風 速に影響を受けるので,風がある場合,音速は正確に 計測できない.

本研究で提案する振れ角計測法は,質点距離または 音速が未知であっても振れ角が正確に推定できるとい う特長がある.また,シミュレーションでは,3本の マイクロホンから得られる3つの音響信号を観測した と想定し,2つの到来時間差を与える.このとき,質 点距離が未知の場合と音速が未知の場合それぞれにつ いて,マイクロホンアレイから得られた音響信号,す なわち2つの到来時間差から振れ角が計算できること を示す.

2 理論

2.1 天井クレーンの各パラメータ

図1に本研究で提案する天井クレーンにおけるマイ クロホン配置図を示す.なお,クレーンの質点(フック または吊り荷)に図2のような発音体が組み込まれて いる.ここでは、3つのマイクロホンの位置をそれぞれ M₁, M₂, M₃とし,原点,質点(音源),トロリの位置 をそれぞれ O, P, Qとする.また, $\theta = \pi/2 - \angle PQO$, $l_w = \overline{QP}, p = \overline{OQ}$ とおく.なお,マイクロホンは固 定されているので,それらの位置に関係するパラメー タ: $X_1 = \overline{M_1M_2}, X_2 = \overline{M_2M_3}$ は定数となる.ここで, θ を振れ角, l_w を質点距離と呼ぶこととする.また, $l_d = \overline{PM_1}, l_d + d_2 = \overline{PM_2}, l_d + d_3 = \overline{PM_3}$ とする.つ まり d_2, d_3 はそれぞれ音源とマイクロホン M₁M₂間, マイクロホン M₁M₃間の距離の差となる.

2.2 到来時間差の推定

音響信号から d_2, d_3 を求める手順を示す.3本のマ イクロホンへ到達した音響信号を $s_1(t), s_2(t), s_3(t)$ と し, $s_1(t)$ と $s_2(t), s_1(t)$ と $s_3(t)$ についてそれぞれ τ_k サンプル離れた両信号の相関関数

$$\Phi(\tau_k) = \sum_{t=0}^{T_o} s_1 (t + \tau_k) s_i(t)$$
 (1)

を計算する.ただし, T_o は音響信号の観測データ数で ある.相関が最大となるときのサンプル数を τ_k^* ,すな わち $\tau_k^* = \arg \max_{\tau_k} \Phi(\tau_k)$ とし,各マイクロホンへの 音響信号の到来時間差 Δt は $\Delta t = T_s \tau_k^*$ となる.さら に、サンプリング時間を T_s ,音速を v_a とすると,音

図 1: マイクロホンアレイを組み込んだ天井クレーン (提案構成)

源とマイクロホン M_1M_2 間,マイクロホン M_1M_3 間 の距離の差は $d = T_s v_a \tau_k^*$ となる.ただし,マイクロ ホン数が3の場合, dは2つ存在するので,図1中の ようにそれぞれ d_2, d_3 と書く.

2.3 質点距離が未知の場合

まず, *l*_d は 図 1 の △M₁PQ に余弦定理を用いて

 $l_d^2 = (p - X_1 - X_2)^2 + l_w^2 - 2(p - X_1 - X_2)l_w \sin\theta$ (2)

となる. さらに図 1 の △M₂PQ と △M₃PQ にも余弦 定理を用いると,以下の関係式が得られる.

$$(l_d + d_2)^2 = (p - X_2)^2 + {l_w}^2 - 2(p - X_2)l_w \sin\theta$$
(3)

$$(l_d + d_3)^2 = p^2 + {l_w}^2 - 2pl_w \sin\theta$$
(4)

式(2)-(4)を変形すると

$$\begin{cases} l_w \sin \theta = \frac{(p - X_1 - X_2)^2 + l_w^2 - l_d^2}{2(p - X_1 - X_2)} \\ l_w \sin \theta = \frac{(p - X_2)^2 + l_w^2 - (l_d + d_2)^2}{2(p - X_2)} \\ l_w \sin \theta = \frac{p^2 + l_w^2 - (l_d + d_3)^2}{2p} \end{cases}$$
(5)

となるので,これより,以下のように l_d を求めることができる.

$$l_d = \frac{k_1 + k_2 + k_3}{2(k_4 + k_5)} \tag{6}$$

ただし,

$$k_{1} = pX_{2}(p - X_{2})(X_{1} + X_{2})$$

$$k_{2} = -(X_{1} + X_{2})\{-pd_{2}^{2} + (p - X_{2})d_{3}^{2}\}$$

$$k_{3} = -X_{2}(p - X_{1} - X_{2})\{p(X_{1} + X_{2}) - d_{3}^{2}$$

$$k_{4} = \{-pd_{2} + (p - X_{2})d_{3}\}(X_{1} + X_{2})$$

$$k_{5} = -X_{2}(p - X_{1} - X_{2})d_{3}$$

図 2: 発音体を内蔵したクレーンフック

と求められるので,これらの値を用いてθは以下のように求められる.

$$\theta = \sin^{-1} \left\{ \frac{p^2 + l_w^2 - (l_d + d_3)^2}{2pl_w} \right\}$$
(9)

ただし, p は既知である. すなわち, 到来時間差から 求まる距離の差 d_2, d_3 とマイクロホン距離などの既知 のパラメータから θ を算出することができる.

2.4 音速が未知の場合

クレーンの屋外作業における音速について考える. 空気中の音速は温度 *t_a* [°C] を用いて

$$v_a = 331.5 + 0.6t_a \ [m/s] \tag{10}$$

と計算されることが知られている.ただし,厳密には 音速の計算には湿度や気圧が関係し,さらに屋外では 風の影響を大きく受ける.また,クレーンに取り付け られた温度計で空気の温度を正確に計測することも困 難である.そこで,今回はマイクロホンを3つ配置す ることで振れ角だけでなく音速も推定可能となること を示す.

$$l_d = \{(p - X_1 - X_2)^2 + {l_w}^2 - 2(p - X_1 - X_2)l_w \\ \cdot \sin\theta\}^{\frac{1}{2}}$$
(11)

となる. さらに図 1 の \triangle M₂PQ と \triangle M₃PQ にも余弦 定理を用いると、以下の関係式が得られる.

$$l_d + \Delta t_2 v_a = \left\{ (p - X_2)^2 + {l_w}^2 - 2(p - X_2) l_w \sin \theta \right\}^{\frac{1}{2}}$$
(12)

$$l_d + \Delta t_3 v_a = \left\{ p^2 + {l_w}^2 - 2p l_w \sin \theta \right\}^{\frac{1}{2}}$$
(13)

ここで,式(11)を式(12),(13)に代入すると

$$\Delta t_2 v_a = \left\{ (p - X_2)^2 + {l_w}^2 - 2(p - X_2) l_w \sin \theta \right\}^{\frac{1}{2}} - \left\{ (p - X_1 - X_2)^2 + {l_w}^2 - 2(p - X_1 - X_2) l_w \sin \theta \right\}^{\frac{1}{2}}$$
(14)

$$\Delta t_3 v_a = \left\{ p^2 + l_w^2 - 2p l_w \sin \theta \right\}^{\frac{1}{2}} - \left\{ (p - X_1 - X_2)^2 + l_w^2 - 2(p - X_1 - X_2) l_w \sin \theta \right\}^{\frac{1}{2}}$$
(15)

が得られる.連立方程式(14),(15)では未知のパラメー タは $\theta \ge v_a$ であるので,この連立方程式を解けば、 θ と v_a が求まる.すなわち,

$$f(\theta) = \frac{1}{\Delta t_2} \left\{ \left\{ (p - X_2)^2 + l_w^2 - 2(p - X_2) l_w \sin \theta \right\}^{\frac{1}{2}} - \left\{ (p - X_1 - X_2)^2 + l_w^2 - 2(p - X_1 - X_2) l_w \sin \theta \right\}^{\frac{1}{2}} \right\} - \frac{1}{\Delta t_3} \left\{ \left\{ p^2 + l_w^2 - 2p l_w \sin \theta \right\}^{\frac{1}{2}} - \left\{ (p - X_1 - X_2)^2 + l_w^2 - 2(p - X_1 - X_2) l_w \sin \theta \right\}^{\frac{1}{2}} \right\}$$
(16)

とおき,

$$f(\theta) = 0, \quad \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 (17)

を満たす θ を求めることにより,ある Δt_2 , Δt_3 に対 する θ を計算できる.しかしながら,質点距離が未知 の場合とは異なり, $f(\theta)$ は非線形方程式なので陽に解 くことは困難である.したがって,以下に数値計算に よる解法を示す.

図 1 から, Δt_2 , Δt_3 が与えられれば, それに対応 する θ は最低 1 つは存在することがわかる. そこで, $f(\theta)$ を θ で偏微分すると

$$\frac{\partial f(\theta)}{\partial \theta} = \frac{1}{\Delta t_2} \left\{ -(p - X_2) l_w \cos \theta \left\{ (p - X_2)^2 + l_w^2 - 2(p - X_2) l_w \sin \theta \right\}^{-\frac{1}{2}} + (p - X_1 - X_2) l_w \cos \theta \left\{ (p - X_1 - X_2)^2 + l_w^2 - 2(p - X_1 - X_2) l_w \sin \theta \right\}^{-\frac{1}{2}} \right\} + \frac{1}{\Delta t_3} \left\{ p l_w \cos \theta \left\{ p^2 + l_w^2 - 2p l_w \sin \theta \right\}^{-\frac{1}{2}} - (p - X_1 - X_2) l_w \cos \theta \left\{ (p - X_1 - X_2)^2 + l_w^2 - 2(p - X_1 - X_2) l_w \sin \theta \right\}^{-\frac{1}{2}} \right\}$$
(18)

となる.よって,式(18)を利用することにより,ニュートン法が適用可能となる.

図 3: 到来時間差の変化と対応する θ の計算結果

すなわち、 θ_0 を初期振れ角、 θ_n をn回目の計算で 得られた振れ角として、

$$\theta_{n+1} = \theta_n - \frac{f(\theta_n)}{\left\{\frac{\partial f(\theta_n)}{\partial \theta}\right\}}$$
(19)

なる計算を繰り返すことにより, $f(\theta) = 0$ を満たす θ を数値計算できる.

収束条件は,

$$|f(\theta, l_d)| < \delta \tag{20}$$

となった場合に $f(\theta) = 0$ に十分近づいたものとして, 収束と判断する.ただし, δ は十分に小さい正の実数 であるとする.

3 シミュレーション

3.1 質点距離が未知の場合

まず、マイク、トロリ、質点の座標を与え、幾何学 的関係から X_1, X_2, p ,距離の差を計算する.また、 θ の真値も幾何学的関係から予め計算しておく.ただし、 この真値は本来は未知である点に注意する必要がある. 今回は、音速 v_a は既知であり、 l_w は未知である.

次に、吊り荷を-30[deg] から30[deg] の間で単振動 させたシミュレーションの結果を図3に示す.なお、パ ラメータの値はマイク問距離 $X_1 = X_2 = 20$ [cm]、ト ロリの位置p = 30[cm] としている.

図3より,到来時間差に合わせて計算した振れ角 *θ* とその真値が一致していることから,理論の正当性が 確認できる.

3.2 音速が未知の場合

質点距離が未知の場合と同様に,幾何学的関係から 得られた到来時間差 Δt_2 , Δt_3 を用いて振れ角 θ を計 算し,これを θ の真値と比較することで Δt_2 , Δt_3 か ら振れ角を計算できることを確認する.このとき,音 速 v_a の値を必要としない点に注意されたい.すなわ ち,音速 v_a は未知, l_w は既知である.なお,質点距

図 4: X₁ = X₂ = 20[cm], *p* = 20[cm] のときの到来時 間差と振れ角の関係

表 1: ニュートン法の繰り返し回数(1000回平均値) の比較

the number		$X_1, X_2[cm]$	
of iteration		10	20
$p[\mathrm{cm}]$	20	3.9760	4.0030
	40	3.5546	3.8789
	60	3.6086	3.2583

離が未知の場合と異なり,振れ角はニュートン法で計 算する必要があるため,何回の繰り返しで収束するか 解析する必要がある.この条件で,吊り荷を-30[deg] から 30[deg] の間で単振動させた際のシミュレーショ ンを行った.なお,パラメータの値は,マイク間距離 $X_1 = X_2 = 20$ [cm],トロリの位置 p = 20[cm] として いる.

このときの到来時間差 Δt_2 , Δt_3 の値と, そのとき 計算された振れ角 θ の値を図 4 に示す. 図 4 より, 2 つの到来時間差からニュートン法を用いて振れ角 θ が 計算できていることが確認できる.また,ニュートン 法で値が収束するまでの繰り返し回数をまとめた結果 を表 1 に示す.ただし, 1000 回試行の平均値である. いずれの場合においても数回で収束していることが確 認できる.

4 むすび

本研究では、クレーンの振れ止め制御における吊り 荷の振れ角の検出について、3つのマイクロホンより 取得した音響信号を利用した振れ角推定アルゴリズム を提案した.この方法は、ロープのたわみによって質 点距離が未知の場合,あるいは風の影響によって音速 が未知についても振れ角が推定可能であるので、屋外 で使用されるクレーンの振れ角の推定において、極め て有益な特性となる.なお、マイクロホン数を4とす れば、質点距離と音速がともに未知であっても振れ角 が計測できることも確認している.また、マイクロホ ンの配置を変更すれば、振れ角θだけでなく質点の3 次元的な位置を推定することも可能であるが、これら は紙面の都合上割愛する.

謝辞

本研究は,JST 研究成果最適展開支援プログラム(A-STEP)の支援を受けて行われたものである.記して関 係各位に謝意を表する.

参考文献

- [1] G. Hilhorst, G. Pipeleers, W. Michiels, R. C. L. F. Oliveira, P. L. D. Peres and J. Swevers: Fixed-Order Linear Parameter-Varying Feedback Control of a Lab-Scale Overhead Crane, *IEEE Trans. Control Systems Technology*, vol.24, no.5, pp.1899-1907, Sept. 2016.
- [2] J. Smoczek and J. Szpytko: Particle Swarm Optimization-Based Multivariable Generalized Predictive Control for an Overhead Crane *IEEE/ASME Trans. Mechatronics*, vol.22, no.1, pp.258-268, Feb. 2017.
- [3] X. Wu and X. He: Nonlinear Energy-Based Regulation Control of Three-Dimensional Overhead Cranes, *IEEE Trans. Automation Science and Engineering*, vol.14, no.2, pp.1297-1308, April 2017.
- [4] D. Chwa: Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes, *IEEE Trans. Ind. Electron.*, vol.64, no.8, pp.6775-6784, Aug. 2017.
- [5] B. Lu, Y. Fang and N. Sun: Adaptive Output-Feedback Control for Dual Overhead Crane System With Enhanced Anti-Swing Performance, *IEEE Trans. Control Systems Technology*, Early Access Article, 2019.
- [6] M. Matsunaga, M. Nakamoto and T. Yamamoto: A sound-based measurement of sway angle for antisway control of overhead crane, Journal of Robotics, Networking and Artificial Life, Vol. 4, No. 4, pp.322-325, March 2018.
- [7] 松永 美樹, 堀江直貴, 中本 昌由, 山本 透: ニュート ン法の改良とメジアンフィルタに基づく音響ソフ トセンサの特性改善, 電気学会論文誌 C, vol. 139, no. 4, pp.421-428, April 2019.