電力系統安定化を目的とした単相同期化カインバータの実験的検証

An Experimental Study of a Single-phase Synchronous Inverter

	松尾 興	具祐†	足立 虹太†	関﨑 真也	餘利野 直人 [†]
	佐々木	、豊†	造賀 芳文†	西﨑 一郎†	清水 敏久††
Kos	uke Mat	suo†	Kota Adachi [†]	Shinya Sekiza	ki [†] Naoto Yorino [†]
Yutaka	Sasaki [†]	Yosh	ifumi Zoka† 🛛	Ichiro Nishizaki	[†] Toshihisa Shimizu ^{††}
*広	島大学	大学	院工学研究科	システムサイ	バネティクス専攻

**首都大学東京 大学院システムデザイン研究科 電子情報システム工学域

1 はじめに

再生可能エネルギー (RES: renewable energy sources)の急速な導入により、電力系統における 従来の信頼度基準[1-3]の維持が困難となる問題が 懸念され,系統安定化策が検討されている.著者 らは,電力系統の慣性力低下に起因する安定度の 問題に注目し、三相および単相インバータに擬似 的な同期化力を具備するための研究開発を行って きた^[4,5].著者らは、同期化力を具備した単相イン バータを単相同期化力インバータ (single-phase synchronous inverter: SSI) と呼び, 提案制御系を実 装した SSI を実現するための数値シミュレーショ ンおよび HIL (hardware-in-the-loop) システムによ り、その有効性を段階的に検証してきた⁶⁰.本稿 では,提案制御系をデジタル制御系として再設計 し, DSP (digital signal processing) ボードに実装 した上で、簡易電力系統モデルを用いて実験的検 証を行ったので報告する.

2 提案制御系

本稿では、同期機 X' モデル、ガバナ、および 自動電圧調整装置 (automatic voltage regulator: AVR)からなる線形化同期機モデル(1)-(7)式を採 用している. (1)-(5)式において、 θ_{inv} は SSI の擬似 回転子角度, M_{inv}は擬似慣性定数, D_{inv}は擬似ダ ンピング係数, Pm は擬似機械入力, Pe は単相有 効電力出力, P_{gov} はガバナ出力, K_{gov} はガバナゲ イン、 T_{evv} はガバナ時定数、 ω_{ref} は周波数指令値 である. 記号ムは定常状態における平衡点からの 微小変動量を表す. (1)(2)(3)式は,時間t, *θ*_{inv}, 内部周波数 ω_{inv} ,周波数指令値 ω_{ref} の関係を表す. (5)式はガバナのドループ特性を示す.(6)(7)式にお いて、 V^{avr} はAVR 出力、 K_{avr} はAVR ゲイン、 T_{avr} は AVR の時定数, Vgrid* は系統電圧指令値の実効 値である.(6)式において、出力電圧実効値Vinvは、 系統電圧実効値と AVR 出力の和によって計算さ れる. (7)式では, AVR は一次遅れ特性を持ってお (同期機モデル)

$$M_{inv} \frac{d^2 \Delta \theta_{inv}}{dt^2} + D_{iinv} \frac{d\Delta \theta_{inv}}{dt} = P_m + P_{gov} - P_e \dots (1)$$

$$\omega_{inv} = \omega_{ref} + \Delta \omega_{inv} \dots \tag{4}$$

(ガバナ)

(AVR)

$$V^{inv} = V^{grid} + V^{avr} \tag{6}$$

$$T_{avr}\frac{dV^{avr}}{dt} + V^{avr} = K_{avr} \left(V^{grid*} - V^{grid} \right) \dots (7)$$

り,飽和発生時のワインドアップを回避するため に,積分器を持つ比例積分 (proportional integral: PI)制御を用いることは避けている.(1)式に基づ き, P_e が平衡点から増加した場合,(1)式の右辺が 0になるように,SSI は擬似回転子角度 $\Delta \theta_{inv}$ を減 少させる.一方で, P_e が減少した場合,SSI は $\Delta \theta_{inv}$ を増加させる.したがって,SSI の出力電圧位相 θ_{diff} は θ_{inv} により自動的に制御されることになる. この同機器の同期メカニズム)は、PLL (phase locked loop)なしに同期を実現することができ, PLL の不安定性を回避し,安定な同期を達成する ことができる.特に,マイクログリッドの独立運 転における安定運用において有効である.

3 実験装置の構築

図1に,実際に構築した実験環境を示す.DC/DC コンバータ(MWEPC-DDN-A5R0: Myway Plus Corp.) へ印加する直流電圧源として,鉛蓄電池 (12V)を4台直列に繋いだものを用意した. DC/DC コンバータは SSI の直流リンク電圧を 180V に維持する.開発した制御系は C 言語によ りコード化され, DSP ボード (PE-Expert4: Myway Plus Corp.) に実装される.マイクログリッド内の 電流センサ,電圧センサから検出された値は A/D, D/A 変換器を介して PE-Expert4 に送信される.提 案制御系は検出された値に基づき,インバータ

(MWINV-1R022: Myway Plus Corp.)を制御する ためのゲート信号を生成する.図1(b)は実験に用 いるマイクログリッドである.1台のSSIをAC フィルタ,線路,開閉器,同期検定器を介して100V, 60Hz系統に接続している。系統との間にある線路 インピーダンスは小さいため,同期検定器を用い て安全に留意して実験を行っている.また,何ら かの要因でSSI制御系が不安定になり,過電流が 発生した場合であっても系統側に影響を及ばさな いように,遮断器を系統との間に設置している. 表1に回路パラメータを,表2にSSIパラメータ を示す。また,本稿では(5)式のガバナ機能はオフ にしている.

具体的な手順は以下の通りである.

 ・図1(b)でSW #1,SW #2の初期状態はともに「開」.
・DC/DC コンバータの電源を投入し,SSIの直流 リンク電圧を180V にする.

• PE-Expert4 に実装された提案制御系を実行し、
SSI を出力電圧 100V,内部周波数 60Hz になるまで加速させる.

SSI 内部周波数を系統周波数と等しくなるまで
加速させた後, SW #1 を閉じる.

・同期検定器が SSI の出力電圧と系統電圧の位相 が一致したのを検出した瞬間に SW #2 を閉じるこ とで, SSI と系統が同期連系する.

4 実験結果

図 2 はt = -0.99s で同期連系を行ったときの結 果であり、図 2 の(a), (b)はそれぞれ同期連系時の SSI の有効電力出力 P_e , SSI 内部周波数を示してい る。図 2 からt = -0.99s で系統と連系後も、SSI は不安定化することなく同期運転していることが 確認できる.以上より、提案制御系の性能が実機 のインバータを用いた実機実験でも確認できた.

5 おわりに

本稿では、開発した単相同期化力インバータの 制御系を実機に実装し、その動作検証を実機のイ ンバータを用いて行った.実験により、SSI が実 系統とも同期連系できることを確認した.今後は マイクログリッド運用を実現するため、複数台の SSI を連系し、検証を行う予定である.

(b) Circuit configuration of single-phase microgrid 図1構築した実験環境

表 1	実験	同路ノ	ペラ	×	ータ
11 1	一天向火	느냬ᄱㅁ╯	• /	1.	

Design parameters	Value	
Battery voltage V_{in}	48V	
DC link voltage V_{DC}	180V	
AC filter L	10mH	
Synchro-scope Resistor	54 Ω	
Output frequency	60Hz	
Switching frequency	20kHz	
Gird Voltage & Frequency	100V / 60Hz	

表 2 SSI パラメータ

Design parameters	Value		
Virtual inertia coefficient M_{inv}	1		
Virtual damping coefficient D_{inv}	50		
Virtual mechanical input P_m	0W		
Reference frequency ω_{ref}	377rad/s		
Time constant for the AVR T_{avr}	0.001s		
AVR gain K_{avr}	1.0		
Reference voltage V^{grid*}	100V		

参考文献

- T. E. Dy Liacco, "System security: the computer's role," *IEEE Spectrum*, vol. 15, no. 6, pp. 43-50, Jun. 1978.
- [2] B. Stott and E. Hobson, "Power system security control calculations using linear programming, Part1&2," *IEEE Trans. Power App. Syst.*, vol. PAS-97, no. 5, pp. 1713-1731, Sep./Oct. 1978.
- [3] M. H. Banakar and F. D. Galiana, "Power system security corridors concept and computation," *IEEE Trans. Power App. Syst.*, vol. PAS-100, no. 11, pp. 4524-4532, Nov. 1981.
- [4] 野口敬太, 佐々木豊, 造賀芳文, 餘利野直人, "同 期化カインバータを用いた系統安定化制御,"平 成 25 年度電気・情報関連学会中国支部連合大会, pp.67-68, 2013 年 10 月 19 日, 岡山大学
- [5] 中村優希, 関崎真也, 佐々木豊, 三宅正尭, 造賀 芳文, 餘利野直人, "系統安定化を目的とした同 期化カインバータを用いた電力システムシミュ レーションと簡易実験による検証,"パワーエレ クトロニクス学会若手研究会, JIPE-40-33, 2014 年 12 月 20 日, 同志社大学
- [6] 関崎真也, 餘利野直人, 佐々木豊, 松尾興佑, 中 村優希, 造賀芳文, 清水敏久, 西崎一郎, "電力系 統安定化と非常時のマイクログリッド運用を目 的とした特性非干渉型単相同期化力インバータ の提案と実験的検証,"電学論 B, Vol. 138, No. 11, pp. 893-901 (2018).